e5d5ef9d55
Most notably: Give le.refl the attribute [refl]. This simplifies tactic proofs in various places. Redefine the order of trunc_index, and instantiate it as weak order. Add more about pointed equivalences.
183 lines
5.9 KiB
Text
183 lines
5.9 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Properties of finite sums and products in various structures, including ordered rings and fields.
|
||
There are two versions of every theorem: one for finsets, and one for finite sets.
|
||
-/
|
||
import .group_bigops .ordered_field
|
||
|
||
variables {A B : Type}
|
||
variable [deceqA : decidable_eq A]
|
||
|
||
/-
|
||
-- finset versions
|
||
-/
|
||
|
||
namespace finset
|
||
|
||
section comm_semiring
|
||
variable [csB : comm_semiring B]
|
||
include deceqA csB
|
||
|
||
proposition mul_Sum (f : A → B) {s : finset A} (b : B) :
|
||
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
|
||
begin
|
||
induction s with a s ans ih,
|
||
{rewrite [+Sum_empty, mul_zero]},
|
||
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
|
||
rewrite [-ih, left_distrib]
|
||
end
|
||
|
||
proposition Sum_mul (f : A → B) {s : finset A} (b : B) :
|
||
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
|
||
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
|
||
|
||
proposition Prod_eq_zero (f : A → B) {s : finset A} {a : A} (H : a ∈ s) (fa0 : f a = 0) :
|
||
(∏ x ∈ s, f x) = 0 :=
|
||
begin
|
||
induction s with b s bns ih,
|
||
{exact absurd H !not_mem_empty},
|
||
rewrite [Prod_insert_of_not_mem f bns],
|
||
have a = b ∨ a ∈ s, from eq_or_mem_of_mem_insert H,
|
||
cases this with aeqb ains,
|
||
{rewrite [-aeqb, fa0, zero_mul]},
|
||
rewrite [ih ains, mul_zero]
|
||
end
|
||
end comm_semiring
|
||
|
||
section ordered_comm_group
|
||
variable [ocgB : ordered_comm_group B]
|
||
include deceqA ocgB
|
||
|
||
proposition Sum_le_Sum (f g : A → B) {s : finset A} (H: ∀ x, x ∈ s → f x ≤ g x) :
|
||
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
|
||
begin
|
||
induction s with a s ans ih,
|
||
{exact le.refl _},
|
||
have H1 : f a ≤ g a, from H _ !mem_insert,
|
||
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
|
||
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
|
||
apply add_le_add H1 H2
|
||
end
|
||
|
||
proposition Sum_nonneg (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≥ 0) :
|
||
(∑ x ∈ s, f x) ≥ 0 :=
|
||
calc
|
||
0 = (∑ x ∈ s, 0) : Sum_zero
|
||
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
|
||
|
||
proposition Sum_nonpos (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≤ 0) :
|
||
(∑ x ∈ s, f x) ≤ 0 :=
|
||
calc
|
||
0 = (∑ x ∈ s, 0) : Sum_zero
|
||
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
|
||
end ordered_comm_group
|
||
|
||
section decidable_linear_ordered_comm_group
|
||
variable [dloocgB : decidable_linear_ordered_comm_group B]
|
||
include deceqA dloocgB
|
||
|
||
proposition abs_Sum_le (f : A → B) (s : finset A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
|
||
begin
|
||
induction s with a s ans ih,
|
||
{rewrite [+Sum_empty, abs_zero]},
|
||
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
|
||
apply le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply add_le_add_left ih
|
||
end
|
||
end decidable_linear_ordered_comm_group
|
||
|
||
end finset
|
||
|
||
/-
|
||
-- set versions
|
||
-/
|
||
|
||
namespace set
|
||
open classical
|
||
|
||
section comm_semiring
|
||
variable [csB : comm_semiring B]
|
||
include csB
|
||
|
||
proposition mul_Sum (f : A → B) {s : set A} (b : B) :
|
||
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
|
||
begin
|
||
cases (em (finite s)) with fins nfins,
|
||
rotate 1,
|
||
{rewrite [+Sum_of_not_finite nfins, mul_zero]},
|
||
induction fins with a s fins ans ih,
|
||
{rewrite [+Sum_empty, mul_zero]},
|
||
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
|
||
rewrite [-ih, left_distrib]
|
||
end
|
||
|
||
proposition Sum_mul (f : A → B) {s : set A} (b : B) :
|
||
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
|
||
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
|
||
|
||
proposition Prod_eq_zero (f : A → B) {s : set A} [fins : finite s] {a : A} (H : a ∈ s) (fa0 : f a = 0) :
|
||
(∏ x ∈ s, f x) = 0 :=
|
||
begin
|
||
induction fins with b s fins bns ih,
|
||
{exact absurd H !not_mem_empty},
|
||
rewrite [Prod_insert_of_not_mem f bns],
|
||
have a = b ∨ a ∈ s, from eq_or_mem_of_mem_insert H,
|
||
cases this with aeqb ains,
|
||
{rewrite [-aeqb, fa0, zero_mul]},
|
||
rewrite [ih ains, mul_zero]
|
||
end
|
||
end comm_semiring
|
||
|
||
section ordered_comm_group
|
||
variable [ocgB : ordered_comm_group B]
|
||
include ocgB
|
||
|
||
proposition Sum_le_Sum (f g : A → B) {s : set A} (H: ∀₀ x ∈ s, f x ≤ g x) :
|
||
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
|
||
begin
|
||
cases (em (finite s)) with fins nfins,
|
||
{induction fins with a s fins ans ih,
|
||
{rewrite +Sum_empty},
|
||
{rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
|
||
have H1 : f a ≤ g a, from H !mem_insert,
|
||
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
|
||
apply add_le_add H1 H2}},
|
||
rewrite [+Sum_of_not_finite nfins]
|
||
end
|
||
|
||
proposition Sum_nonneg (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≥ 0) :
|
||
(∑ x ∈ s, f x) ≥ 0 :=
|
||
calc
|
||
0 = (∑ x ∈ s, 0) : Sum_zero
|
||
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
|
||
|
||
proposition Sum_nonpos (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≤ 0) :
|
||
(∑ x ∈ s, f x) ≤ 0 :=
|
||
calc
|
||
0 = (∑ x ∈ s, 0) : Sum_zero
|
||
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
|
||
end ordered_comm_group
|
||
|
||
section decidable_linear_ordered_comm_group
|
||
variable [dloocgB : decidable_linear_ordered_comm_group B]
|
||
include deceqA dloocgB
|
||
|
||
proposition abs_Sum_le (f : A → B) (s : set A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
|
||
begin
|
||
cases (em (finite s)) with fins nfins,
|
||
rotate 1,
|
||
{rewrite [+Sum_of_not_finite nfins, abs_zero]},
|
||
induction fins with a s fins ans ih,
|
||
{rewrite [+Sum_empty, abs_zero]},
|
||
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
|
||
apply le.trans,
|
||
apply abs_add_le_abs_add_abs,
|
||
apply add_le_add_left ih
|
||
end
|
||
end decidable_linear_ordered_comm_group
|
||
|
||
end set
|