lean2/library/theories/group_theory/cyclic.lean

392 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Haitao Zhang
-/
import data algebra.group algebra.group_power .finsubg .hom .perm
open function algebra finset
open eq.ops
namespace group
section cyclic
open nat fin list
local attribute madd [reducible]
variable {A : Type}
variable [ambG : group A]
include ambG
lemma pow_mod {a : A} {n m : nat} : a ^ m = 1 → a ^ n = a ^ (n mod m) :=
assume Pid,
assert a ^ (n div m * m) = 1, from calc
a ^ (n div m * m) = a ^ (m * (n div m)) : by rewrite (mul.comm (n div m) m)
... = (a ^ m) ^ (n div m) : by rewrite pow_mul
... = 1 ^ (n div m) : by rewrite Pid
... = 1 : one_pow (n div m),
calc a ^ n = a ^ (n div m * m + n mod m) : by rewrite -(eq_div_mul_add_mod n m)
... = a ^ (n div m * m) * a ^ (n mod m) : by rewrite pow_add
... = 1 * a ^ (n mod m) : by rewrite this
... = a ^ (n mod m) : by rewrite one_mul
lemma pow_sub_eq_one_of_pow_eq {a : A} {i j : nat} :
a^i = a^j → a^(i - j) = 1 :=
assume Pe, or.elim (lt_or_ge i j)
(assume Piltj, begin rewrite [sub_eq_zero_of_le (nat.le_of_lt Piltj)] end)
(assume Pigej, begin rewrite [pow_sub a Pigej, Pe, mul.right_inv] end)
lemma pow_dist_eq_one_of_pow_eq {a : A} {i j : nat} :
a^i = a^j → a^(dist i j) = 1 :=
assume Pe, or.elim (lt_or_ge i j)
(suppose i < j, by rewrite [dist_eq_sub_of_lt this]; exact pow_sub_eq_one_of_pow_eq (eq.symm Pe))
(suppose i ≥ j, by rewrite [dist_eq_sub_of_ge this]; exact pow_sub_eq_one_of_pow_eq Pe)
lemma pow_madd {a : A} {n : nat} {i j : fin (succ n)} :
a^(succ n) = 1 → a^(val (i + j)) = a^i * a^j :=
assume Pe, calc
a^(val (i + j)) = a^((i + j) mod (succ n)) : rfl
... = a^(i + j) : by rewrite [-pow_mod Pe]
... = a^i * a^j : by rewrite pow_add
lemma mk_pow_mod {a : A} {n m : nat} : a ^ (succ m) = 1 → a ^ n = a ^ (mk_mod m n) :=
assume Pe, pow_mod Pe
variable [finA : fintype A]
include finA
open fintype
variable [deceqA : decidable_eq A]
include deceqA
lemma exists_pow_eq_one (a : A) : ∃ n, n < card A ∧ a ^ (succ n) = 1 :=
let f := (λ i : fin (succ (card A)), a ^ i) in
assert Pninj : ¬(injective f), from assume Pinj,
absurd (card_le_of_inj _ _ (exists.intro f Pinj))
(begin rewrite [card_fin], apply not_succ_le_self end),
obtain i₁ P₁, from exists_not_of_not_forall Pninj,
obtain i₂ P₂, from exists_not_of_not_forall P₁,
obtain Pfe Pne, from iff.elim_left not_implies_iff_and_not P₂,
assert Pvne : val i₁ ≠ val i₂, from assume Pveq, absurd (eq_of_veq Pveq) Pne,
exists.intro (pred (dist i₁ i₂)) (begin
rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)], apply and.intro,
apply lt_of_succ_lt_succ,
rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)],
apply nat.lt_of_le_of_lt dist_le_max (max_lt i₁ i₂),
apply pow_dist_eq_one_of_pow_eq Pfe
end)
-- Another possibility is to generate a list of powers and use find to get the first
-- unity.
-- The bound on bex is arbitrary as long as it is large enough (at least card A). Making
-- it larger simplifies some proofs, such as a ∈ cyc a.
definition cyc (a : A) : finset A := {x ∈ univ | bex (succ (card A)) (λ n, a ^ n = x)}
definition order (a : A) := card (cyc a)
definition pow_fin (a : A) (n : nat) (i : fin (order a)) := pow a (i + n)
definition cyc_pow_fin (a : A) (n : nat) : finset A := image (pow_fin a n) univ
lemma order_le_group_order {a : A} : order a ≤ card A :=
card_le_card_of_subset !subset_univ
lemma cyc_has_one (a : A) : 1 ∈ cyc a :=
begin
apply mem_sep_of_mem !mem_univ,
existsi 0, apply and.intro,
apply zero_lt_succ,
apply pow_zero
end
lemma order_pos (a : A) : 0 < order a :=
length_pos_of_mem (cyc_has_one a)
lemma cyc_mul_closed (a : A) : finset_mul_closed_on (cyc a) :=
take g h, assume Pgin Phin,
obtain n Plt Pe, from exists_pow_eq_one a,
obtain i Pilt Pig, from of_mem_sep Pgin,
obtain j Pjlt Pjh, from of_mem_sep Phin,
begin
rewrite [-Pig, -Pjh, -pow_add, pow_mod Pe],
apply mem_sep_of_mem !mem_univ,
existsi ((i + j) mod (succ n)), apply and.intro,
apply nat.lt.trans (mod_lt (i+j) !zero_lt_succ) (succ_lt_succ Plt),
apply rfl
end
lemma cyc_has_inv (a : A) : finset_has_inv (cyc a) :=
take g, assume Pgin,
obtain n Plt Pe, from exists_pow_eq_one a,
obtain i Pilt Pig, from of_mem_sep Pgin,
let ni := -(mk_mod n i) in
assert Pinv : g*a^ni = 1, by
rewrite [-Pig, mk_pow_mod Pe, -(pow_madd Pe), add.right_inv],
begin
rewrite [inv_eq_of_mul_eq_one Pinv],
apply mem_sep_of_mem !mem_univ,
existsi ni, apply and.intro,
apply nat.lt.trans (is_lt ni) (succ_lt_succ Plt),
apply rfl
end
lemma self_mem_cyc (a : A) : a ∈ cyc a :=
mem_sep_of_mem !mem_univ
(exists.intro (1 : nat) (and.intro (succ_lt_succ card_pos) !pow_one))
lemma mem_cyc (a : A) : ∀ {n : nat}, a^n ∈ cyc a
| 0 := cyc_has_one a
| (succ n) :=
begin rewrite pow_succ, apply cyc_mul_closed a, exact mem_cyc, apply self_mem_cyc end
lemma order_le {a : A} {n : nat} : a^(succ n) = 1 → order a ≤ succ n :=
assume Pe, let s := image (pow a) (upto (succ n)) in
assert Psub: cyc a ⊆ s, from subset_of_forall
(take g, assume Pgin, obtain i Pilt Pig, from of_mem_sep Pgin, begin
rewrite [-Pig, pow_mod Pe],
apply mem_image,
apply mem_upto_of_lt (mod_lt i !zero_lt_succ),
exact rfl end),
#nat calc order a ≤ card s : card_le_card_of_subset Psub
... ≤ card (upto (succ n)) : !card_image_le
... = succ n : card_upto (succ n)
lemma pow_ne_of_lt_order {a : A} {n : nat} : succ n < order a → a^(succ n) ≠ 1 :=
assume Plt, not_imp_not_of_imp order_le (nat.not_le_of_gt Plt)
lemma eq_zero_of_pow_eq_one {a : A} : ∀ {n : nat}, a^n = 1 → n < order a → n = 0
| 0 := assume Pe Plt, rfl
| (succ n) := assume Pe Plt, absurd Pe (pow_ne_of_lt_order Plt)
lemma pow_fin_inj (a : A) (n : nat) : injective (pow_fin a n) :=
take i j,
suppose a^(i + n) = a^(j + n),
have a^(dist i j) = 1, begin apply !dist_add_add_right ▸ (pow_dist_eq_one_of_pow_eq this) end,
have dist i j = 0, from
eq_zero_of_pow_eq_one this (nat.lt_of_le_of_lt dist_le_max (max_lt i j)),
eq_of_veq (eq_of_dist_eq_zero this)
lemma cyc_eq_cyc (a : A) (n : nat) : cyc_pow_fin a n = cyc a :=
assert Psub : cyc_pow_fin a n ⊆ cyc a, from subset_of_forall
(take g, assume Pgin,
obtain i Pin Pig, from exists_of_mem_image Pgin, by rewrite [-Pig]; apply mem_cyc),
eq_of_card_eq_of_subset (begin apply eq.trans,
apply card_image_eq_of_inj_on,
rewrite [to_set_univ, -set.injective_iff_inj_on_univ], exact pow_fin_inj a n,
rewrite [card_fin] end) Psub
lemma pow_order (a : A) : a^(order a) = 1 :=
obtain i Pin Pone, from exists_of_mem_image (eq.symm (cyc_eq_cyc a 1) ▸ cyc_has_one a),
or.elim (eq_or_lt_of_le (succ_le_of_lt (is_lt i)))
(assume P, P ▸ Pone) (assume P, absurd Pone (pow_ne_of_lt_order P))
lemma eq_one_of_order_eq_one {a : A} : order a = 1 → a = 1 :=
assume Porder,
calc a = a^1 : by rewrite (pow_one a)
... = a^(order a) : by rewrite Porder
... = 1 : by rewrite pow_order
lemma order_of_min_pow {a : A} {n : nat}
(Pone : a^(succ n) = 1) (Pmin : ∀ i, i < n → a^(succ i) ≠ 1) : order a = succ n :=
or.elim (eq_or_lt_of_le (order_le Pone)) (λ P, P)
(λ P : order a < succ n, begin
assert Pn : a^(order a) ≠ 1,
rewrite [-(succ_pred_of_pos (order_pos a))],
apply Pmin, apply nat.lt_of_succ_lt_succ,
rewrite [succ_pred_of_pos !order_pos], assumption,
exact absurd (pow_order a) Pn end)
lemma order_dvd_of_pow_eq_one {a : A} {n : nat} (Pone : a^n = 1) : order a n :=
assert Pe : a^(n mod order a) = 1, from
begin
revert Pone,
rewrite [eq_div_mul_add_mod n (order a) at {1}, pow_add, mul.comm _ (order a), pow_mul, pow_order, one_pow, one_mul],
intros, assumption
end,
dvd_of_mod_eq_zero (eq_zero_of_pow_eq_one Pe (mod_lt n !order_pos))
definition cyc_is_finsubg [instance] (a : A) : is_finsubg (cyc a) :=
is_finsubg.mk (cyc_has_one a) (cyc_mul_closed a) (cyc_has_inv a)
lemma order_dvd_group_order (a : A) : order a card A :=
dvd.intro (eq.symm (!mul.comm ▸ lagrange_theorem (subset_univ (cyc a))))
definition pow_fin' (a : A) (i : fin (succ (pred (order a)))) := pow a i
local attribute group_of_add_group [instance]
lemma pow_fin_hom (a : A) : homomorphic (pow_fin' a) :=
take i j,
begin
rewrite [↑pow_fin'],
apply pow_madd,
rewrite [succ_pred_of_pos !order_pos],
exact pow_order a
end
definition pow_fin_is_iso (a : A) : is_iso_class (pow_fin' a) :=
is_iso_class.mk (pow_fin_hom a)
(begin rewrite [↑pow_fin', succ_pred_of_pos !order_pos], exact pow_fin_inj a 0 end)
end cyclic
section rot
open nat list
open fin fintype list
section
local attribute group_of_add_group [instance]
local infix ^ := algebra.pow
lemma pow_eq_mul {n : nat} {i : fin (succ n)} : ∀ {k : nat}, i^k = mk_mod n (i*k)
| 0 := by rewrite [pow_zero]
| (succ k) := begin
assert Psucc : i^(succ k) = madd (i^k) i, apply pow_succ,
rewrite [Psucc, pow_eq_mul],
apply eq_of_veq,
rewrite [mul_succ, val_madd, ↑mk_mod, mod_add_mod]
end
end
definition rotl : ∀ {n : nat} m : nat, fin n → fin n
| 0 := take m i, elim0 i
| (succ n) := take m, madd (mk_mod n (n*m))
definition rotr : ∀ {n : nat} m : nat, fin n → fin n
| (0:nat) := take m i, elim0 i
| (nat.succ n) := take m, madd (-(mk_mod n (n*m)))
lemma rotl_succ' {n m : nat} : rotl m = madd (mk_mod n (n*m)) := rfl
lemma rotl_zero : ∀ {n : nat}, @rotl n 0 = id
| 0 := funext take i, elim0 i
| (succ n) := funext take i, zero_add i
lemma rotl_id : ∀ {n : nat}, @rotl n n = id
| 0 := funext take i, elim0 i
| (succ n) :=
assert P : mk_mod n (n * succ n) = mk_mod n 0,
from eq_of_veq !mul_mod_left,
begin rewrite [rotl_succ', P], apply rotl_zero end
lemma rotl_to_zero {n i : nat} : rotl i (mk_mod n i) = zero n :=
eq_of_veq begin rewrite [↑rotl, val_madd], esimp [mk_mod], rewrite [ mod_add_mod, add_mod_mod, -succ_mul, mul_mod_right] end
lemma rotl_compose : ∀ {n : nat} {j k : nat}, (@rotl n j) ∘ (rotl k) = rotl (j + k)
| 0 := take j k, funext take i, elim0 i
| (succ n) := take j k, funext take i, eq.symm begin
rewrite [*rotl_succ', mul.left_distrib, -(@madd_mk_mod n (n*j)), madd_assoc],
end
lemma rotr_rotl : ∀ {n : nat} (m : nat) {i : fin n}, rotr m (rotl m i) = i
| 0 := take m i, elim0 i
| (nat.succ n) := take m i, calc (-(mk_mod n (n*m))) + ((mk_mod n (n*m)) + i) = i : by rewrite neg_add_cancel_left
lemma rotl_rotr : ∀ {n : nat} (m : nat), (@rotl n m) ∘ (rotr m) = id
| 0 := take m, funext take i, elim0 i
| (nat.succ n) := take m, funext take i, calc (mk_mod n (n*m)) + (-(mk_mod n (n*m)) + i) = i : add_neg_cancel_left
lemma rotl_succ {n : nat} : (rotl 1) ∘ (@succ n) = lift_succ :=
funext (take i, eq_of_veq (begin rewrite [↑compose, ↑rotl, ↑madd, mul_one n, ↑mk_mod, mod_add_mod, ↑lift_succ, val_succ, -succ_add_eq_succ_add, add_mod_self_left, mod_eq_of_lt (lt.trans (is_lt i) !lt_succ_self), -val_lift] end))
definition list.rotl {A : Type} : ∀ l : list A, list A
| [] := []
| (a::l) := l++[a]
lemma rotl_cons {A : Type} {a : A} {l} : list.rotl (a::l) = l++[a] := rfl
lemma rotl_map {A B : Type} {f : A → B} : ∀ {l : list A}, list.rotl (map f l) = map f (list.rotl l)
| [] := rfl
| (a::l) := begin rewrite [map_cons, *rotl_cons, map_append] end
lemma rotl_eq_rotl : ∀ {n : nat}, map (rotl 1) (upto n) = list.rotl (upto n)
| 0 := rfl
| (succ n) := begin
rewrite [upto_step at {1}, upto_succ, rotl_cons, map_append],
congruence,
rewrite [map_map], congruence, exact rotl_succ,
rewrite [map_singleton], congruence, rewrite [↑rotl, mul_one n, ↑mk_mod, ↑zero, ↑maxi, ↑madd],
congruence, rewrite [ mod_add_mod, nat.add_zero, mod_eq_of_lt !lt_succ_self ]
end
definition seq [reducible] (A : Type) (n : nat) := fin n → A
variable {A : Type}
definition rotl_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotl m)
definition rotr_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotr m)
lemma rotl_seq_zero {n : nat} : rotl_fun 0 = @id (seq A n) :=
funext take f, begin rewrite [↑rotl_fun, rotl_zero] end
lemma rotl_seq_ne_id : ∀ {n : nat}, (∃ a b : A, a ≠ b) → ∀ i, i < n → rotl_fun (succ i) ≠ (@id (seq A (succ n)))
| 0 := assume Pex, take i, assume Piltn, absurd Piltn !not_lt_zero
| (succ n) := assume Pex, obtain a b Pne, from Pex, take i, assume Pilt,
let f := (λ j : fin (succ (succ n)), if j = zero (succ n) then a else b),
fi := mk_mod (succ n) (succ i) in
have Pfne : rotl_fun (succ i) f fi ≠ f fi,
from begin rewrite [↑rotl_fun, rotl_to_zero, mk_mod_of_lt (succ_lt_succ Pilt), if_pos rfl, if_neg mk_succ_ne_zero], assumption end,
have P : rotl_fun (succ i) f ≠ f, from
assume Peq, absurd (congr_fun Peq fi) Pfne,
assume Peq, absurd (congr_fun Peq f) P
lemma rotr_rotl_fun {n : nat} (m : nat) (f : seq A n) : rotr_fun m (rotl_fun m f) = f :=
calc f ∘ (rotl m) ∘ (rotr m) = f ∘ ((rotl m) ∘ (rotr m)) : by rewrite -compose.assoc
... = f ∘ id : by rewrite (rotl_rotr m)
lemma rotl_fun_inj {n : nat} {m : nat} : @injective (seq A n) (seq A n) (rotl_fun m) :=
injective_of_has_left_inverse (exists.intro (rotr_fun m) (rotr_rotl_fun m))
lemma seq_rotl_eq_list_rotl {n : nat} (f : seq A n) :
fun_to_list (rotl_fun 1 f) = list.rotl (fun_to_list f) :=
begin
rewrite [↑fun_to_list, ↑rotl_fun, -map_map, rotl_map],
congruence, exact rotl_eq_rotl
end
end rot
section rotg
open nat fin fintype
definition rotl_perm [reducible] (A : Type) [finA : fintype A] [deceqA : decidable_eq A] (n : nat) (m : nat) : perm (seq A n) :=
perm.mk (rotl_fun m) rotl_fun_inj
variable {A : Type}
variable [finA : fintype A]
variable [deceqA : decidable_eq A]
variable {n : nat}
include finA deceqA
lemma rotl_perm_mul {i j : nat} : (rotl_perm A n i) * (rotl_perm A n j) = rotl_perm A n (j+i) :=
eq_of_feq (funext take f, calc
f ∘ (rotl j) ∘ (rotl i) = f ∘ ((rotl j) ∘ (rotl i)) : by rewrite -compose.assoc
... = f ∘ (rotl (j+i)) : by rewrite rotl_compose)
lemma rotl_perm_pow_eq : ∀ {i : nat}, (rotl_perm A n 1) ^ i = rotl_perm A n i
| 0 := begin rewrite [pow_zero, ↑rotl_perm, perm_one, -eq_iff_feq], esimp, rewrite rotl_seq_zero end
| (succ i) := begin rewrite [pow_succ, rotl_perm_pow_eq, rotl_perm_mul, one_add] end
lemma rotl_perm_pow_eq_one : (rotl_perm A n 1) ^ n = 1 :=
eq.trans rotl_perm_pow_eq (eq_of_feq begin esimp [rotl_perm], rewrite [↑rotl_fun, rotl_id] end)
lemma rotl_perm_mod {i : nat} : rotl_perm A n i = rotl_perm A n (i mod n) :=
calc rotl_perm A n i = (rotl_perm A n 1) ^ i : by rewrite rotl_perm_pow_eq
... = (rotl_perm A n 1) ^ (i mod n) : by rewrite (pow_mod rotl_perm_pow_eq_one)
... = rotl_perm A n (i mod n) : by rewrite rotl_perm_pow_eq
-- needs A to have at least two elements!
lemma rotl_perm_pow_ne_one (Pex : ∃ a b : A, a ≠ b) : ∀ i, i < n → (rotl_perm A (succ n) 1)^(succ i) ≠ 1 :=
take i, assume Piltn, begin
intro P, revert P, rewrite [rotl_perm_pow_eq, -eq_iff_feq, perm_one, *perm.f_mk],
intro P, exact absurd P (rotl_seq_ne_id Pex i Piltn)
end
lemma rotl_perm_order (Pex : ∃ a b : A, a ≠ b) : order (rotl_perm A (succ n) 1) = (succ n) :=
order_of_min_pow rotl_perm_pow_eq_one (rotl_perm_pow_ne_one Pex)
end rotg
end group