344 lines
13 KiB
Text
344 lines
13 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn, Leonardo de Moura
|
||
|
||
This file demonstrates how to encode vectors using indexed inductive families.
|
||
In standard library we do not use this approach.
|
||
-/
|
||
import data.nat data.list data.fin data.fixed_list
|
||
open nat prod fin
|
||
|
||
inductive vector (A : Type) : nat → Type :=
|
||
| nil {} : vector A zero
|
||
| cons : Π {n}, A → vector A n → vector A (succ n)
|
||
|
||
namespace vector
|
||
notation a :: b := cons a b
|
||
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
|
||
|
||
variables {A B C : Type}
|
||
|
||
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n)
|
||
| 0 := inhabited.mk []
|
||
| (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
|
||
|
||
theorem vector0_eq_nil : ∀ (v : vector A 0), v = []
|
||
| [] := rfl
|
||
|
||
definition head : Π {n : nat}, vector A (succ n) → A
|
||
| n (a::v) := a
|
||
|
||
definition tail : Π {n : nat}, vector A (succ n) → vector A n
|
||
| n (a::v) := v
|
||
|
||
theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h :=
|
||
rfl
|
||
|
||
theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t :=
|
||
rfl
|
||
|
||
theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v
|
||
| n (a::v) := rfl
|
||
|
||
definition last : Π {n : nat}, vector A (succ n) → A
|
||
| last [a] := a
|
||
| last (a::v) := last v
|
||
|
||
theorem last_singleton (a : A) : last [a] = a :=
|
||
rfl
|
||
|
||
theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
|
||
rfl
|
||
|
||
definition const : Π (n : nat), A → vector A n
|
||
| 0 a := []
|
||
| (succ n) a := a :: const n a
|
||
|
||
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
|
||
rfl
|
||
|
||
theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a
|
||
| 0 a := rfl
|
||
| (n+1) a := last_const n a
|
||
|
||
definition nth : Π {n : nat}, vector A n → fin n → A
|
||
| ⌞0⌟ [] i := elim0 i
|
||
| ⌞n+1⌟ (a :: v) (mk 0 _) := a
|
||
| ⌞n+1⌟ (a :: v) (mk (succ i) h) := nth v (mk_pred i h)
|
||
|
||
lemma nth_zero {n : nat} (a : A) (v : vector A n) (h : 0 < succ n) : nth (a::v) (mk 0 h) = a :=
|
||
rfl
|
||
|
||
lemma nth_succ {n : nat} (a : A) (v : vector A n) (i : nat) (h : succ i < succ n)
|
||
: nth (a::v) (mk (succ i) h) = nth v (mk_pred i h) :=
|
||
rfl
|
||
|
||
definition tabulate : Π {n : nat}, (fin n → A) → vector A n
|
||
| 0 f := []
|
||
| (n+1) f := f (@zero n) :: tabulate (λ i : fin n, f (succ i))
|
||
|
||
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
|
||
| 0 f i := elim0 i
|
||
| (n+1) f (mk 0 h) := by reflexivity
|
||
| (n+1) f (mk (succ i) h) :=
|
||
begin
|
||
change nth (f (@zero n) :: tabulate (λ i : fin n, f (succ i))) (mk (succ i) h) = f (mk (succ i) h),
|
||
rewrite nth_succ,
|
||
rewrite nth_tabulate
|
||
end
|
||
|
||
definition map (f : A → B) : Π {n : nat}, vector A n → vector B n
|
||
| map [] := []
|
||
| map (a::v) := f a :: map v
|
||
|
||
theorem map_nil (f : A → B) : map f [] = [] :=
|
||
rfl
|
||
|
||
theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
|
||
rfl
|
||
|
||
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
|
||
| 0 v i := elim0 i
|
||
| (succ n) (a :: t) (mk 0 h) := by reflexivity
|
||
| (succ n) (a :: t) (mk (succ i) h) := by rewrite [map_cons, *nth_succ, nth_map]
|
||
|
||
section
|
||
open function
|
||
theorem map_id : ∀ {n : nat} (v : vector A n), map id v = v
|
||
| 0 [] := rfl
|
||
| (succ n) (x::xs) := by rewrite [map_cons, map_id]
|
||
|
||
theorem map_map (g : B → C) (f : A → B) : ∀ {n :nat} (v : vector A n), map g (map f v) = map (g ∘ f) v
|
||
| 0 [] := rfl
|
||
| (succ n) (a :: l) :=
|
||
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
|
||
by rewrite (map_map l)
|
||
end
|
||
|
||
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n
|
||
| map2 [] [] := []
|
||
| map2 (a::va) (b::vb) := f a b :: map2 va vb
|
||
|
||
theorem map2_nil (f : A → B → C) : map2 f [] [] = [] :=
|
||
rfl
|
||
|
||
theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
|
||
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
|
||
rfl
|
||
|
||
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
|
||
| 0 m [] w := w
|
||
| (succ n) m (a::v) w := a :: (append v w)
|
||
|
||
theorem append_nil_left {n : nat} (v : vector A n) : append [] v = v :=
|
||
rfl
|
||
|
||
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
|
||
append (h::t) v = h :: (append t v) :=
|
||
rfl
|
||
|
||
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
|
||
| 0 m [] w := rfl
|
||
| (n+1) m (h :: t) w :=
|
||
begin
|
||
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
|
||
rewrite map_append
|
||
end
|
||
|
||
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
|
||
| unzip [] := ([], [])
|
||
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
|
||
|
||
theorem unzip_nil : unzip (@nil (A × B)) = ([], []) :=
|
||
rfl
|
||
|
||
theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) :
|
||
unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) :=
|
||
rfl
|
||
|
||
definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n
|
||
| zip [] [] := []
|
||
| zip (a::va) (b::vb) := ((a, b) :: zip va vb)
|
||
|
||
theorem zip_nil_nil : zip (@nil A) (@nil B) = nil :=
|
||
rfl
|
||
|
||
theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) :
|
||
zip (a::va) (b::vb) = ((a, b) :: zip va vb) :=
|
||
rfl
|
||
|
||
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂)
|
||
| 0 [] [] := rfl
|
||
| (n+1) (a::va) (b::vb) := calc
|
||
unzip (zip (a :: va) (b :: vb))
|
||
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
|
||
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
|
||
... = (a :: va, b :: vb) : rfl
|
||
|
||
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
|
||
| 0 [] := rfl
|
||
| (n+1) ((a, b) :: v) := calc
|
||
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
|
||
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
|
||
... = (a, b) :: v : by rewrite zip_unzip
|
||
|
||
/- Concat -/
|
||
|
||
definition concat : Π {n : nat}, vector A n → A → vector A (succ n)
|
||
| concat [] a := [a]
|
||
| concat (b::v) a := b :: concat v a
|
||
|
||
theorem concat_nil (a : A) : concat [] a = [a] :=
|
||
rfl
|
||
|
||
theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a :=
|
||
rfl
|
||
|
||
theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a
|
||
| 0 [] a := rfl
|
||
| (n+1) (b::v) a := calc
|
||
last (concat (b::v) a) = last (concat v a) : rfl
|
||
... = a : last_concat v a
|
||
|
||
/- Reverse -/
|
||
|
||
definition reverse : Π {n : nat}, vector A n → vector A n
|
||
| 0 [] := []
|
||
| (n+1) (x :: xs) := concat (reverse xs) x
|
||
|
||
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
|
||
| 0 [] a := rfl
|
||
| (n+1) (x :: xs) a :=
|
||
begin
|
||
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
|
||
rewrite reverse_concat
|
||
end
|
||
|
||
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
|
||
| 0 [] := rfl
|
||
| (n+1) (x :: xs) :=
|
||
begin
|
||
change (reverse (concat (reverse xs) x) = x :: xs),
|
||
rewrite [reverse_concat, reverse_reverse]
|
||
end
|
||
|
||
/- list <-> vector -/
|
||
|
||
definition of_list : Π (l : list A), vector A (list.length l)
|
||
| list.nil := []
|
||
| (list.cons a l) := a :: (of_list l)
|
||
|
||
definition to_list : Π {n : nat}, vector A n → list A
|
||
| 0 [] := list.nil
|
||
| (n+1) (a :: vs) := list.cons a (to_list vs)
|
||
|
||
theorem to_list_of_list : ∀ (l : list A), to_list (of_list l) = l
|
||
| list.nil := rfl
|
||
| (list.cons a l) :=
|
||
begin
|
||
change (list.cons a (to_list (of_list l)) = list.cons a l),
|
||
rewrite to_list_of_list
|
||
end
|
||
|
||
theorem to_list_nil : to_list [] = (list.nil : list A) :=
|
||
rfl
|
||
|
||
theorem length_to_list : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
|
||
| 0 [] := rfl
|
||
| (n+1) (a :: vs) :=
|
||
begin
|
||
change (succ (list.length (to_list vs)) = succ n),
|
||
rewrite length_to_list
|
||
end
|
||
|
||
theorem heq_of_list_eq : ∀ {n m} {v₁ : vector A n} {v₂ : vector A m}, to_list v₁ = to_list v₂ → n = m → v₁ == v₂
|
||
| 0 0 [] [] h₁ h₂ := !heq.refl
|
||
| 0 (m+1) [] (y::ys) h₁ h₂ := by contradiction
|
||
| (n+1) 0 (x::xs) [] h₁ h₂ := by contradiction
|
||
| (n+1) (m+1) (x::xs) (y::ys) h₁ h₂ :=
|
||
assert e₁ : n = m, from succ.inj h₂,
|
||
assert e₂ : x = y, begin unfold to_list at h₁, injection h₁, assumption end,
|
||
have to_list xs = to_list ys, begin unfold to_list at h₁, injection h₁, assumption end,
|
||
assert xs == ys, from heq_of_list_eq this e₁,
|
||
assert y :: xs == y :: ys, begin clear heq_of_list_eq h₁ h₂, revert xs ys this, induction e₁, intro xs ys h, rewrite [heq.to_eq h] end,
|
||
show x :: xs == y :: ys, by rewrite e₂; exact this
|
||
|
||
theorem list_eq_of_heq {n m} {v₁ : vector A n} {v₂ : vector A m} : v₁ == v₂ → n = m → to_list v₁ = to_list v₂ :=
|
||
begin
|
||
intro h₁ h₂, revert v₁ v₂ h₁,
|
||
subst n, intro v₁ v₂ h₁, rewrite [heq.to_eq h₁]
|
||
end
|
||
|
||
theorem of_list_to_list {n : nat} (v : vector A n) : of_list (to_list v) == v :=
|
||
begin
|
||
apply heq_of_list_eq, rewrite to_list_of_list, rewrite length_to_list
|
||
end
|
||
|
||
theorem to_list_append : ∀ {n m : nat} (v₁ : vector A n) (v₂ : vector A m), to_list (append v₁ v₂) = list.append (to_list v₁) (to_list v₂)
|
||
| 0 m [] ys := rfl
|
||
| (succ n) m (x::xs) ys := begin unfold append, unfold to_list at {1,2}, krewrite [to_list_append xs ys] end
|
||
|
||
theorem to_list_map (f : A → B) : ∀ {n : nat} (v : vector A n), to_list (map f v) = list.map f (to_list v)
|
||
| 0 [] := rfl
|
||
| (succ n) (x::xs) := begin unfold [map, to_list], rewrite to_list_map end
|
||
|
||
theorem to_list_concat : ∀ {n : nat} (v : vector A n) (a : A), to_list (concat v a) = list.concat a (to_list v)
|
||
| 0 [] a := rfl
|
||
| (succ n) (x::xs) a := begin unfold [concat, to_list], rewrite to_list_concat end
|
||
|
||
theorem to_list_reverse : ∀ {n : nat} (v : vector A n), to_list (reverse v) = list.reverse (to_list v)
|
||
| 0 [] := rfl
|
||
| (succ n) (x::xs) := begin unfold [reverse], rewrite [to_list_concat, to_list_reverse] end
|
||
|
||
theorem append_nil_right {n : nat} (v : vector A n) : append v [] == v :=
|
||
begin
|
||
apply heq_of_list_eq,
|
||
rewrite [to_list_append, to_list_nil, list.append_nil_right],
|
||
rewrite [-add_eq_addl]
|
||
end
|
||
|
||
theorem append.assoc {n₁ n₂ n₃ : nat} (v₁ : vector A n₁) (v₂ : vector A n₂) (v₃ : vector A n₃) : append v₁ (append v₂ v₃) == append (append v₁ v₂) v₃ :=
|
||
begin
|
||
apply heq_of_list_eq,
|
||
rewrite [*to_list_append, list.append.assoc],
|
||
rewrite [-*add_eq_addl, add.assoc]
|
||
end
|
||
|
||
theorem reverse_append {n m : nat} (v : vector A n) (w : vector A m) : reverse (append v w) == append (reverse w) (reverse v) :=
|
||
begin
|
||
apply heq_of_list_eq,
|
||
rewrite [to_list_reverse, to_list_append, list.reverse_append, to_list_append, *to_list_reverse],
|
||
rewrite [-*add_eq_addl, add.comm]
|
||
end
|
||
|
||
theorem concat_eq_append {n : nat} (v : vector A n) (a : A) : concat v a == append v [a] :=
|
||
begin
|
||
apply heq_of_list_eq,
|
||
rewrite [to_list_concat, to_list_append, list.concat_eq_append],
|
||
rewrite [-add_eq_addl]
|
||
end
|
||
|
||
/- decidable equality -/
|
||
open decidable
|
||
definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂)
|
||
| ⌞0⌟ [] [] := by left; reflexivity
|
||
| ⌞n+1⌟ (a::v₁) (b::v₂) :=
|
||
match H a b with
|
||
| inl Hab :=
|
||
match decidable_eq v₁ v₂ with
|
||
| inl He := by left; congruence; repeat assumption
|
||
| inr Hn := by right; intro h; injection h; contradiction
|
||
end
|
||
| inr Hnab := by right; intro h; injection h; contradiction
|
||
end
|
||
|
||
section
|
||
open equiv function
|
||
definition vector_equiv_of_equiv {A B : Type} : A ≃ B → ∀ n, vector A n ≃ vector B n
|
||
| (mk f g l r) n :=
|
||
mk (map f) (map g)
|
||
begin intros, rewrite [map_map, id_of_left_inverse l, map_id], reflexivity end
|
||
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], reflexivity end
|
||
end
|
||
end vector
|