lean2/hott/init/axioms/funext_from_ua.hlean
2014-12-16 13:11:32 -08:00

131 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
prelude
import ..equiv ..datatypes ..types.prod
import .funext_varieties .ua .funext
open eq function prod sigma truncation equiv is_equiv unit ua_type
context
universe variables l
parameter [UA : ua_type.{l+1}]
protected theorem ua_isequiv_postcompose {A B : Type.{l+1}} {C : Type}
{w : A → B} {H0 : is_equiv w} : is_equiv (@compose C A B w) :=
let w' := equiv.mk w H0 in
let eqinv : A = B := ((@is_equiv.inv _ _ _ (@ua_type.inst UA A B)) w') in
let eq' := equiv_path eqinv in
is_equiv.adjointify (@compose C A B w)
(@compose C B A (is_equiv.inv w))
(λ (x : C → B),
have eqretr : eq' = w',
from (@retr _ _ (@equiv_path A B) (@ua_type.inst UA A B) w'),
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (to_fun eq') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
from (λ p,
(@eq.rec_on Type.{l+1} A
(λ B' p', Π (x' : C → B'), (to_fun (equiv_path p'))
∘ ((to_fun (equiv_path p'))⁻¹ ∘ x') = x')
B p (λ x', idp))
) eqinv x,
have eqfin' : (to_fun w') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
from eqretr ▹ eqfin,
have eqfin'' : (to_fun w') ∘ ((to_fun w')⁻¹ ∘ x) = x,
from invs_eq ▹ eqfin',
eqfin''
)
(λ (x : C → A),
have eqretr : eq' = w',
from (@retr _ _ (@equiv_path A B) ua_type.inst w'),
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (to_fun eq')⁻¹ ∘ ((to_fun eq') ∘ x) = x,
from (λ p, eq.rec_on p idp) eqinv,
have eqfin' : (to_fun eq')⁻¹ ∘ ((to_fun w') ∘ x) = x,
from eqretr ▹ eqfin,
have eqfin'' : (to_fun w')⁻¹ ∘ ((to_fun w') ∘ x) = x,
from invs_eq ▹ eqfin',
eqfin''
)
-- We are ready to prove functional extensionality,
-- starting with the naive non-dependent version.
protected definition diagonal [reducible] (B : Type) : Type
:= Σ xy : B × B, pr₁ xy = pr₂ xy
protected definition isequiv_src_compose {A B : Type}
: @is_equiv (A → diagonal B)
(A → B)
(compose (pr₁ ∘ dpr1)) :=
@ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1)
(is_equiv.adjointify (pr₁ ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, eq.rec_on p idp))))
protected definition isequiv_tgt_compose {A B : Type}
: @is_equiv (A → diagonal B)
(A → B)
(compose (pr₂ ∘ dpr1)) :=
@ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1)
(is_equiv.adjointify (pr2 ∘ dpr1)
(λ x, dpair (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, eq.rec_on p idp))))
theorem nondep_funext_from_ua {A : Type} {B : Type.{l+1}}
: Π {f g : A → B}, f g → f = g :=
(λ (f g : A → B) (p : f g),
let d := λ (x : A), dpair (f x , f x) idp in
let e := λ (x : A), dpair (f x , g x) (p x) in
let precomp1 := compose (pr₁ ∘ dpr1) in
have equiv1 [visible] : is_equiv precomp1,
from @isequiv_src_compose A B,
have equiv2 [visible] : Π x y, is_equiv (ap precomp1),
from is_equiv.ap_closed precomp1,
have H' : Π (x y : A → diagonal B),
pr₁ ∘ dpr1 ∘ x = pr₁ ∘ dpr1 ∘ y → x = y,
from (λ x y, is_equiv.inv (ap precomp1)),
have eq2 : pr₁ ∘ dpr1 ∘ d = pr₁ ∘ dpr1 ∘ e,
from idp,
have eq0 : d = e,
from H' d e eq2,
have eq1 : (pr₂ ∘ dpr1) ∘ d = (pr₂ ∘ dpr1) ∘ e,
from ap _ eq0,
eq1
)
end
-- Now we use this to prove weak funext, which as we know
-- implies (with dependent eta) also the strong dependent funext.
universe variables l k
theorem weak_funext_from_ua [ua3 : ua_type.{k+1}] [ua4 : ua_type.{k+2}] : weak_funext.{l+1 k+1} :=
(λ (A : Type) (P : A → Type) allcontr,
let U := (λ (x : A), unit) in
have pequiv : Π (x : A), P x ≃ U x,
from (λ x, @equiv_contr_unit(P x) (allcontr x)),
have psim : Π (x : A), P x = U x,
from (λ x, @is_equiv.inv _ _
equiv_path ua_type.inst (pequiv x)),
have p : P = U,
from @nondep_funext_from_ua _ A Type P U psim,
have tU' : is_contr (A → unit),
from is_contr.mk (λ x, ⋆)
(λ f, @nondep_funext_from_ua _ A unit (λ x, ⋆) f
(λ x, unit.rec_on (f x) idp)),
have tU : is_contr (Π x, U x),
from tU',
have tlast : is_contr (Πx, P x),
from eq.transport _ (p⁻¹) tU,
tlast
)
-- In the following we will proof function extensionality using the univalence axiom
definition funext_from_ua [instance] [ua ua2 : ua_type] : funext :=
funext_from_weak_funext (@weak_funext_from_ua ua ua2)