lean2/hott/algebra/precategory/functor.hlean

296 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.functor
Authors: Floris van Doorn, Jakob von Raumer
-/
import .basic types.pi .iso
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext iso
open pi
section
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
definition homotopy2 [reducible] (f g : Πa b, C a b) : Type :=
Πa b, f a b = g a b
definition homotopy3 [reducible] (f g : Πa b c, D a b c) : Type :=
Πa b c, f a b c = g a b c
notation f `2`:50 g := homotopy2 f g
notation f `3`:50 g := homotopy3 f g
-- definition apD100 {f g : Πa b, C a b} (p : f = g) : f 2 g :=
-- λa b, eq.rec_on p idp
definition apD100 {f g : Πa b, C a b} (p : f = g) : f 2 g :=
λa b, apD10 (apD10 p a) b
definition apD1000 {f g : Πa b c, D a b c} (p : f = g) : f 3 g :=
λa b c, apD100 (apD10 p a) b c
definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f 2 g) : f = g :=
eq_of_homotopy (λa, eq_of_homotopy (H a))
definition eq_of_homotopy3 {f g : Πa b c, D a b c} (H : f 3 g) : f = g :=
eq_of_homotopy (λa, eq_of_homotopy2 (H a))
definition eq_of_homotopy2_id (f : Πa b, C a b)
: eq_of_homotopy2 (λa b, idpath (f a b)) = idpath f :=
begin
apply concat,
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy_id},
apply eq_of_homotopy_id
end
definition eq_of_homotopy3_id (f : Πa b c, D a b c)
: eq_of_homotopy3 (λa b c, idpath (f a b c)) = idpath f :=
begin
apply concat,
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy2_id},
apply eq_of_homotopy_id
end
--TODO: put in namespace funext
definition is_equiv_apD100 [instance] (f g : Πa b, C a b) : is_equiv (@apD100 A B C f g) :=
adjointify _
eq_of_homotopy2
begin
intro H, esimp {apD100,eq_of_homotopy2, function.compose},
apply eq_of_homotopy, intro a,
apply concat, apply (ap (λx, @apD10 _ (λb : B a, _) _ _ (x a))), apply (retr apD10),
--TODO: remove implicit argument after #469 is closed
apply (retr apD10)
end
begin
intro p, cases p, apply eq_of_homotopy2_id
end
definition is_equiv_apD1000 [instance] (f g : Πa b c, D a b c) : is_equiv (@apD1000 A B C D f g) :=
adjointify _
eq_of_homotopy3
begin
intro H, apply eq_of_homotopy, intro a,
apply concat, {apply (ap (λx, @apD100 _ _ (λ(b : B a)(c : C a b), _) _ _ (x a))), apply (retr apD10)},
--TODO: remove implicit argument after #469 is closed
apply (@retr _ _ apD100 !is_equiv_apD100) --is explicit argument needed here?
end
begin
intro p, cases p, apply eq_of_homotopy3_id
end
protected definition homotopy2.rec_on {f g : Πa b, C a b} {P : (f 2 g) → Type}
(p : f 2 g) (H : Π(q : f = g), P (apD100 q)) : P p :=
retr apD100 p ▹ H (eq_of_homotopy2 p)
protected definition homotopy3.rec_on {f g : Πa b c, D a b c} {P : (f 3 g) → Type}
(p : f 3 g) (H : Π(q : f = g), P (apD1000 q)) : P p :=
retr apD1000 p ▹ H (eq_of_homotopy3 p)
end
structure functor (C D : Precategory) : Type :=
(to_fun_ob : C → D)
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b))
(respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a))
(respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)
namespace functor
infixl `⇒`:25 := functor
variables {C D E : Precategory}
attribute to_fun_ob [coercion]
attribute to_fun_hom [coercion]
-- The following lemmas will later be used to prove that the type of
-- precategories forms a precategory itself
protected definition compose [reducible] (G : functor D E) (F : functor C D) : functor C E :=
functor.mk
(λ x, G (F x))
(λ a b f, G (F f))
(λ a, calc
G (F (ID a)) = G (ID (F a)) : by rewrite respect_id
... = ID (G (F a)) : by rewrite respect_id)
(λ a b c g f, calc
G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp
... = G (F g) ∘ G (F f) : by rewrite respect_comp)
infixr `∘f`:60 := compose
protected definition id [reducible] {C : Precategory} : functor C C :=
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
protected definition ID [reducible] (C : Precategory) : functor C C := id
definition functor_eq_mk'' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
(pF : F₁ = F₂) (pH : pF ▹ H₁ = H₂)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim
definition functor_eq_mk' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ F₂)
(pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f)
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
functor_eq_mk'' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF)
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
begin
apply concat, rotate_left 1, exact (pH c c' f),
apply concat, rotate_left 1, apply transport_hom,
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f),
apply (apD10' f),
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c) c'),
apply (apD10' c'),
apply concat, rotate_left 1,
exact (pi_transport_constant (eq_of_homotopy pF) H₁ c),
apply idp
end))))
definition functor_eq_mk_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)}
{H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂)
(pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f)
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
functor_eq_mk'' id₁ id₂ comp₁ comp₂ idp
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (pH c c'))))
definition functor_eq_mk {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ to_fun_ob F₂),
(Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ :=
functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'))
protected definition assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
!functor_eq_mk_constant (λa b f, idp)
protected definition id_left (F : functor C D) : id ∘f F = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
protected definition id_right (F : functor C D) : F ∘f id = F :=
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
set_option apply.class_instance false
-- "functor C D" is equivalent to a certain sigma type
set_option unifier.max_steps 38500
protected definition sigma_char :
(Σ (to_fun_ob : C → D)
(to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)),
(Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) ×
(Π {a b c : C} (g : hom b c) (f : hom a b),
to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) :=
begin
fapply equiv.MK,
{intro S, fapply functor.mk,
exact (S.1), exact (S.2.1),
exact (pr₁ S.2.2), exact (pr₂ S.2.2)},
{intro F,
cases F with (d1, d2, d3, d4),
exact (sigma.mk d1 (sigma.mk d2 (pair d3 (@d4))))},
{intro F,
cases F,
apply idp},
{intro S,
cases S with (d1, S2),
cases S2 with (d2, P1),
cases P1,
apply idp},
end
protected definition is_hset_functor
[HD : is_hset D] : is_hset (functor C D) :=
begin
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
apply sigma_char,
apply is_trunc_sigma, apply is_trunc_pi, intros, exact HD, intro F,
apply is_trunc_sigma, apply is_trunc_pi, intro a,
{apply is_trunc_pi, intro b,
apply is_trunc_pi, intro c, apply !homH},
intro H, apply is_trunc_prod,
{apply is_trunc_pi, intro a,
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
{repeat (apply is_trunc_pi; intros),
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
end
--set_option pp.universes true
-- set_option pp.notation false
-- set_option pp.implicit true
definition functor_eq2' {obF obF' : C → D} {homF homF' idF idF' compF compF'}
(p q : functor.mk obF homF idF compF = functor.mk obF' homF' idF' compF') (r : obF = obF')
: p = q :=
begin
cases r,
end
definition functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ap010 to_fun_ob q)
: p = q :=
begin
end
-- definition ap010_functor_eq_mk' {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ = to_fun_ob F₂)
-- (q : p ▹ F₁ = F₂) (c : C) :
-- ap to_fun_ob (functor_eq_mk (apD10 p) (λa b f, _)) = p := sorry
-- begin
-- cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
-- cases p, clears (e_1, e_2),
-- end
-- TODO: remove sorry
-- maybe some lemma "recursion on homotopy (and equiv)" could be useful
definition ap010_functor_eq_mk {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ to_fun_ob F₂)
(q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) 3 to_fun_hom F₂) (c : C) :
ap010 to_fun_ob (functor_eq_mk p q) c = p c :=
begin
cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
apply sorry,
--cases p, clears (e_1, e_2, p),
--exact (homotopy3.rec_on q sorry)
-- apply (homotopy3.rec_on q),
end
-- definition ap010_functor_eq_mk {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ to_fun_ob F₂)
-- (q : Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) (c : C) :
-- ap010 to_fun_ob (functor_eq_mk p q) c = p c :=
-- begin
-- cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q),
-- cases p, clears (e_1, e_2, p),
-- apply (homotopy3.rec_on q),
-- end
-- ⊢ ap010 to_fun_ob (functor_eq_mk rfl q) c = rfl
end functor
namespace category
open functor
--TODO: make this a structure
definition precat_strict_precat : precategory (Σ (C : Precategory), is_hset C) :=
precategory.mk (λ a b, functor a.1 b.1)
(λ a b, @functor.is_hset_functor a.1 b.1 b.2)
(λ a b c g f, functor.compose g f)
(λ a, functor.id)
(λ a b c d h g f, !functor.assoc)
(λ a b f, !functor.id_left)
(λ a b f, !functor.id_right)
definition Precat_of_strict_cats := precategory.Mk precat_strict_precat
namespace ops
abbreviation SPreCat := Precat_of_strict_cats
--attribute precat_strict_precat [instance]
end ops
end category