lean2/hott/algebra/precategory/nat_trans.hlean

91 lines
3.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.nat_trans
Author: Floris van Doorn, Jakob von Raumer
-/
import .functor .iso
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext
structure nat_trans {C D : Precategory} (F G : C ⇒ D) :=
(natural_map : Π (a : C), hom (F a) (G a))
(naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f)
namespace nat_trans
infixl `⟹`:25 := nat_trans -- \==>
variables {C D : Precategory} {F G H I : C ⇒ D}
attribute natural_map [coercion]
protected definition compose [reducible] (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
nat_trans.mk
(λ a, η a ∘ θ a)
(λ a b f,
calc
H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : by rewrite assoc
... = (η b ∘ G f) ∘ θ a : by rewrite naturality
... = η b ∘ (G f ∘ θ a) : by rewrite assoc
... = η b ∘ (θ b ∘ F f) : by rewrite naturality
... = (η b ∘ θ b) ∘ F f : by rewrite assoc)
infixr `∘n`:60 := compose
protected definition id [reducible] {C D : Precategory} {F : functor C D} : nat_trans F F :=
mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹)
protected definition ID [reducible] {C D : Precategory} (F : functor C D) : nat_trans F F :=
id
definition nat_trans_eq_mk' {η₁ η₂ : Π (a : C), hom (F a) (G a)}
(nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f)
(nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f)
(p : η₁ η₂)
: nat_trans.mk η₁ nat₁ = nat_trans.mk η₂ nat₂ :=
apD011 nat_trans.mk (eq_of_homotopy p) !is_hprop.elim
definition nat_trans_eq_mk {η₁ η₂ : F ⟹ G} : natural_map η₁ natural_map η₂ → η₁ = η₂ :=
nat_trans.rec_on η₁ (λf₁ nat₁, nat_trans.rec_on η₂ (λf₂ nat₂ p, !nat_trans_eq_mk' p))
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
nat_trans_eq_mk (λa, !assoc)
protected definition id_left (η : F ⟹ G) : id ∘n η = η :=
nat_trans_eq_mk (λa, !id_left)
protected definition id_right (η : F ⟹ G) : η ∘n id = η :=
nat_trans_eq_mk (λa, !id_right)
protected definition sigma_char (F G : C ⇒ D) :
(Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) :=
begin
fapply equiv.mk,
intro S, apply nat_trans.mk, exact (S.2),
fapply adjointify,
intro H,
fapply sigma.mk,
intro a, exact (H a),
intros (a, b, f), exact (naturality H f),
intro η, apply nat_trans_eq_mk, intro a, apply idp,
intro S,
fapply sigma_eq,
apply eq_of_homotopy, intro a,
apply idp,
apply is_hprop.elim,
end
set_option apply.class_instance false
definition is_hset_nat_trans : is_hset (F ⟹ G) :=
begin
apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char),
apply is_trunc_sigma,
apply is_trunc_pi, intro a, exact (@homH (Precategory.carrier D) _ (F a) (G a)),
intro η, apply is_trunc_pi, intro a,
apply is_trunc_pi, intro b, apply is_trunc_pi, intro f,
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (Precategory.carrier D) _ (F a) (G b)),
end
end nat_trans