lean2/hott/init/axioms/funext_of_ua.hlean

162 lines
5.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.axioms.funext_of_ua
Author: Jakob von Raumer
Ported from Coq HoTT
-/
prelude
import ..equiv ..datatypes ..types.prod
import .funext_varieties .ua
open eq function prod is_trunc sigma equiv is_equiv unit
context
universe variables l
private theorem ua_isequiv_postcompose {A B : Type.{l}} {C : Type}
{w : A → B} [H0 : is_equiv w] : is_equiv (@compose C A B w) :=
let w' := equiv.mk w H0 in
let eqinv : A = B := ((@is_equiv.inv _ _ _ (univalence A B)) w') in
let eq' := equiv_of_eq eqinv in
is_equiv.adjointify (@compose C A B w)
(@compose C B A (is_equiv.inv w))
(λ (x : C → B),
have eqretr : eq' = w',
from (@retr _ _ (@equiv_of_eq A B) (univalence A B) w'),
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (to_fun eq') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
from (λ p,
(@eq.rec_on Type.{l} A
(λ B' p', Π (x' : C → B'), (to_fun (equiv_of_eq p'))
∘ ((to_fun (equiv_of_eq p'))⁻¹ ∘ x') = x')
B p (λ x', idp))
) eqinv x,
have eqfin' : (to_fun w') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
from eqretr ▹ eqfin,
have eqfin'' : (to_fun w') ∘ ((to_fun w')⁻¹ ∘ x) = x,
from invs_eq ▹ eqfin',
eqfin''
)
(λ (x : C → A),
have eqretr : eq' = w',
from (@retr _ _ (@equiv_of_eq A B) (univalence A B) w'),
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
from inv_eq eq' w' eqretr,
have eqfin : (to_fun eq')⁻¹ ∘ ((to_fun eq') ∘ x) = x,
from (λ p, eq.rec_on p idp) eqinv,
have eqfin' : (to_fun eq')⁻¹ ∘ ((to_fun w') ∘ x) = x,
from eqretr ▹ eqfin,
have eqfin'' : (to_fun w')⁻¹ ∘ ((to_fun w') ∘ x) = x,
from invs_eq ▹ eqfin',
eqfin''
)
-- We are ready to prove functional extensionality,
-- starting with the naive non-dependent version.
private definition diagonal [reducible] (B : Type) : Type
:= Σ xy : B × B, pr₁ xy = pr₂ xy
private definition isequiv_src_compose {A B : Type}
: @is_equiv (A → diagonal B)
(A → B)
(compose (pr₁ ∘ pr1)) :=
@ua_isequiv_postcompose _ _ _ (pr₁ ∘ pr1)
(is_equiv.adjointify (pr₁ ∘ pr1)
(λ x, sigma.mk (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, eq.rec_on p idp))))
private definition isequiv_tgt_compose {A B : Type}
: @is_equiv (A → diagonal B)
(A → B)
(compose (pr₂ ∘ pr1)) :=
@ua_isequiv_postcompose _ _ _ (pr2 ∘ pr1)
(is_equiv.adjointify (pr2 ∘ pr1)
(λ x, sigma.mk (x , x) idp) (λx, idp)
(λ x, sigma.rec_on x
(λ xy, prod.rec_on xy
(λ b c p, eq.rec_on p idp))))
set_option class.conservative false
theorem nondep_funext_from_ua {A : Type} {B : Type}
: Π {f g : A → B}, f g → f = g :=
(λ (f g : A → B) (p : f g),
let d := λ (x : A), sigma.mk (f x , f x) idp in
let e := λ (x : A), sigma.mk (f x , g x) (p x) in
let precomp1 := compose (pr₁ ∘ pr1) in
have equiv1 [visible] : is_equiv precomp1,
from @isequiv_src_compose A B,
have equiv2 [visible] : Π x y, is_equiv (ap precomp1),
from is_equiv.is_equiv_ap precomp1,
have H' : Π (x y : A → diagonal B),
pr₁ ∘ pr1 ∘ x = pr₁ ∘ pr1 ∘ y → x = y,
from (λ x y, is_equiv.inv (ap precomp1)),
have eq2 : pr₁ ∘ pr1 ∘ d = pr₁ ∘ pr1 ∘ e,
from idp,
have eq0 : d = e,
from H' d e eq2,
have eq1 : (pr₂ ∘ pr1) ∘ d = (pr₂ ∘ pr1) ∘ e,
from ap _ eq0,
eq1
)
end
-- Now we use this to prove weak funext, which as we know
-- implies (with dependent eta) also the strong dependent funext.
theorem weak_funext_of_ua : weak_funext :=
(λ (A : Type) (P : A → Type) allcontr,
let U := (λ (x : A), unit) in
have pequiv : Π (x : A), P x ≃ U x,
from (λ x, @equiv_unit_of_is_contr (P x) (allcontr x)),
have psim : Π (x : A), P x = U x,
from (λ x, @is_equiv.inv _ _
equiv_of_eq (univalence _ _) (pequiv x)),
have p : P = U,
from @nondep_funext_from_ua A Type P U psim,
have tU' : is_contr (A → unit),
from is_contr.mk (λ x, ⋆)
(λ f, @nondep_funext_from_ua A unit (λ x, ⋆) f
(λ x, unit.rec_on (f x) idp)),
have tU : is_contr (Π x, U x),
from tU',
have tlast : is_contr (Πx, P x),
from eq.transport _ p⁻¹ tU,
tlast
)
-- In the following we will proof function extensionality using the univalence axiom
definition funext_of_ua : funext :=
funext_of_weak_funext (@weak_funext_of_ua)
namespace funext
definition is_equiv_apD [instance] {A : Type} {P : A → Type} (f g : Π x, P x)
: is_equiv (@apD10 A P f g) :=
funext_of_ua f g
end funext
open funext
definition eq_equiv_homotopy {A : Type} {P : A → Type} {f g : Π x, P x} : (f = g) ≃ (f g) :=
equiv.mk apD10 _
definition eq_of_homotopy {A : Type} {P : A → Type} {f g : Π x, P x} : f g → f = g :=
(@apD10 A P f g)⁻¹
--rename to eq_of_homotopy_idp
definition eq_of_homotopy_id {A : Type} {P : A → Type} (f : Π x, P x)
: eq_of_homotopy (λx : A, idpath (f x)) = idpath f :=
is_equiv.sect apD10 idp
definition naive_funext_of_ua : naive_funext :=
λ A P f g h, eq_of_homotopy h
protected definition homotopy.rec_on {A : Type} {B : A → Type} {f g : Πa, B a} {P : (f g) → Type}
(p : f g) (H : Π(q : f = g), P (apD10 q)) : P p :=
retr apD10 p ▹ H (eq_of_homotopy p)