58fef282c3
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
178 lines
7.9 KiB
C++
178 lines
7.9 KiB
C++
/*
|
|
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Leonardo de Moura
|
|
*/
|
|
#pragma once
|
|
#include "expr.h"
|
|
|
|
namespace lean {
|
|
/**
|
|
\brief Return unit if <tt>num_args == 0<\tt>, args[0] if <tt>num_args == 1<\tt>, and
|
|
<tt>(op args[0] (op args[1] (op ... )))<\tt>
|
|
*/
|
|
expr mk_bin_op(expr const & op, expr const & unit, unsigned num_args, expr const * args);
|
|
expr mk_bin_op(expr const & op, expr const & unit, std::initializer_list<expr> const & l);
|
|
|
|
/** \brief Return (Type m) m >= bottom + Offset */
|
|
expr mk_type_m();
|
|
#define TypeM mk_type_m()
|
|
|
|
/** \brief Return (Type u) u >= m + Offset */
|
|
expr mk_type_u();
|
|
#define TypeU mk_type_u()
|
|
|
|
/** \brief Return the Lean Boolean type. */
|
|
expr mk_bool_type();
|
|
#define Bool mk_bool_type()
|
|
/** \brief Return true iff \c e is the Lean Boolean type. */
|
|
bool is_bool_type(expr const & e);
|
|
|
|
/** \brief Create a Lean Boolean value (true/false) */
|
|
expr mk_bool_value(bool v);
|
|
#define True mk_bool_value(true)
|
|
#define False mk_bool_value(false)
|
|
/** \brief Return true iff \c e is a Lean Boolean value. */
|
|
bool is_bool_value(expr const & e);
|
|
/**
|
|
\brief Convert a Lean Boolean value into a C++ Boolean value.
|
|
\pre is_bool_value(e)
|
|
*/
|
|
bool to_bool(expr const & e);
|
|
/** \brief Return true iff \c e is the Lean true value. */
|
|
bool is_true(expr const & e);
|
|
/** \brief Return true iff \c e is the Lean false value. */
|
|
bool is_false(expr const & e);
|
|
|
|
/** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */
|
|
expr mk_if_fn();
|
|
/** \brief Return true iff \c e is the Lean If-Then-Else operator */
|
|
bool is_if_fn(expr const & e);
|
|
|
|
/** \brief Return the term (if A c t e) */
|
|
inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); }
|
|
inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); }
|
|
/** \brief Return the term (if bool c t e) */
|
|
inline expr mk_bool_if(expr const & c, expr const & t, expr const & e) { return mk_if(mk_bool_type(), c, t, e); }
|
|
inline expr bIf(expr const & c, expr const & t, expr const & e) { return mk_bool_if(c, t, e); }
|
|
|
|
/** \brief Return the Lean Implies operator */
|
|
expr mk_implies_fn();
|
|
/** \brief Return true iff \c e is the Lean implies operator */
|
|
bool is_implies_fn(expr const & e);
|
|
/** \brief Return the term (e1 => e2) */
|
|
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app(mk_implies_fn(), e1, e2); }
|
|
inline expr Implies(expr const & e1, expr const & e2) { return mk_implies(e1, e2); }
|
|
|
|
/** \brief Return the Lean And operator */
|
|
expr mk_and_fn();
|
|
/** \brief Return true iff \c e is the Lean and operator. */
|
|
bool is_and_fn(expr const & e);
|
|
|
|
/** \brief Return (e1 and e2) */
|
|
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); }
|
|
inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_op(mk_and_fn(), True, num_args, args); }
|
|
inline expr And(expr const & e1, expr const & e2) { return mk_and(e1, e2); }
|
|
inline expr And(std::initializer_list<expr> const & l) { return mk_and(l.size(), l.begin()); }
|
|
|
|
/** \brief Return the Lean Or operator */
|
|
expr mk_or_fn();
|
|
bool is_or_fn(expr const & e);
|
|
|
|
/** \brief Return (e1 Or e2) */
|
|
inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); }
|
|
inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_op(mk_or_fn(), False, num_args, args); }
|
|
inline expr Or(expr const & e1, expr const & e2) { return mk_or(e1, e2); }
|
|
inline expr Or(std::initializer_list<expr> const & l) { return mk_or(l.size(), l.begin()); }
|
|
|
|
/** \brief Return the Lean not operator */
|
|
expr mk_not_fn();
|
|
bool is_not_fn(expr const & e);
|
|
|
|
/** \brief Return (Not e) */
|
|
inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); }
|
|
inline expr Not(expr const & e) { return mk_not(e); }
|
|
|
|
/** \brief Return the Lean forall operator. It has type: <tt>Pi (A : Type), (A -> bool) -> Bool<\tt> */
|
|
expr mk_forall_fn();
|
|
/** \brief Return true iff \c e is the Lean forall operator */
|
|
bool is_forall_fn(expr const & e);
|
|
/** \brief Return the term (Forall A P), where A is a type and P : A -> bool */
|
|
inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); }
|
|
inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); }
|
|
|
|
/** \brief Return the Lean exists operator. It has type: <tt>Pi (A : Type), (A -> Bool) -> Bool<\tt> */
|
|
expr mk_exists_fn();
|
|
/** \brief Return true iff \c e is the Lean exists operator */
|
|
bool is_exists_fn(expr const & e);
|
|
/** \brief Return the term (exists A P), where A is a type and P : A -> bool */
|
|
inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); }
|
|
inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); }
|
|
|
|
/** \brief Modus Ponens axiom */
|
|
expr mk_mp_fn();
|
|
bool is_mp_fn(const expr & e);
|
|
/** \brief (Axiom) a : Bool, b : Bool, H1 : a => b, H2 : a |- MP(a, b, H1, H2) : b */
|
|
inline expr MP(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_mp_fn(), a, b, H1, H2); }
|
|
|
|
/** \brief Discharge axiom */
|
|
expr mk_discharge_fn();
|
|
bool is_discharge_fn(const expr & e);
|
|
/** \brief (Axiom) a : Bool, b : Bool, H : a -> b |- Discharge(a, b, H) : a => b */
|
|
inline expr Discharge(expr const & a, expr const & b, expr const & H) { return mk_app(mk_discharge_fn(), a, b, H); }
|
|
|
|
/** \brief Reflexivity axiom */
|
|
expr mk_refl_fn();
|
|
bool is_refl_fn(expr const & e);
|
|
/** \brief (Axiom) A : Type u, a : A |- Refl(A, a) : a = a */
|
|
inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); }
|
|
#define Trivial Refl(Bool, True)
|
|
|
|
/** \brief Case analysis axiom */
|
|
expr mk_case_fn();
|
|
bool is_case_fn(expr const & e);
|
|
/** \brief (Axiom) P : Bool -> Bool, H1 : P True, H2 : P False, a : Bool |- Case(P, H1, H2, a) : P a */
|
|
inline expr Case(expr const & P, expr const & H1, expr const & H2, expr const & a) { return mk_app(mk_case_fn(), P, H1, H2, a); }
|
|
|
|
/** \brief Substitution axiom */
|
|
expr mk_subst_fn();
|
|
bool is_subst_fn(expr const & e);
|
|
/** \brief (Axiom) A : Type u, P : A -> Bool, a b : A, H1 : P a, H2 : a = b |- Subst(A, P, a, b, H1, H2) : P b */
|
|
inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); }
|
|
|
|
/** \brief Eta conversion axiom */
|
|
expr mk_eta_fn();
|
|
bool is_eta_fn(expr const & e);
|
|
/** \brief (Axiom) A : Type u, B : A -> Type u, f : (Pi x : A, B x) |- Eta(A, B, f) : ((Fun x : A => f x) = f) */
|
|
inline expr Eta(expr const & A, expr const & B, expr const & f) { return mk_app(mk_eta_fn(), A, B, f); }
|
|
|
|
class environment;
|
|
/** \brief Initialize the environment with basic builtin declarations and axioms */
|
|
void add_basic_theory(environment & env);
|
|
|
|
/**
|
|
\brief Helper macro for defining constants such as bool_type, int_type, int_add, etc.
|
|
*/
|
|
#define MK_BUILTIN(Name, ClassName) \
|
|
expr mk_##Name() { \
|
|
static thread_local expr r = mk_value(*(new ClassName())); \
|
|
return r; \
|
|
} \
|
|
bool is_##Name(expr const & e) { \
|
|
return is_value(e) && to_value(e).kind() == ClassName::g_kind; \
|
|
}
|
|
|
|
/**
|
|
\brief Helper macro for generating "defined" constants.
|
|
*/
|
|
#define MK_CONSTANT(Name, NameObj) \
|
|
static name Name ## _name = NameObj; \
|
|
expr mk_##Name() { \
|
|
static thread_local expr r = mk_constant(Name ## _name); \
|
|
return r ; \
|
|
} \
|
|
bool is_##Name(expr const & e) { \
|
|
return is_constant(e) && const_name(e) == Name ## _name; \
|
|
}
|
|
}
|