322 lines
12 KiB
Text
322 lines
12 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
-/
|
||
|
||
import algebra.category.constructions function arity
|
||
|
||
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
|
||
|
||
namespace category
|
||
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||
|
||
-- TODO: define a structure "adjoint" and then define
|
||
-- structure is_left_adjoint (F : C ⇒ D) :=
|
||
-- (G : D ⇒ C) -- G
|
||
-- (is_adjoint : adjoint F G)
|
||
|
||
structure is_left_adjoint [class] (F : C ⇒ D) :=
|
||
(G : D ⇒ C)
|
||
(η : 1 ⟹ G ∘f F)
|
||
(ε : F ∘f G ⟹ 1)
|
||
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
|
||
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
|
||
|
||
abbreviation right_adjoint := @is_left_adjoint.G
|
||
abbreviation unit := @is_left_adjoint.η
|
||
abbreviation counit := @is_left_adjoint.ε
|
||
|
||
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
|
||
mk' ::
|
||
(is_iso_unit : is_iso η)
|
||
(is_iso_counit : is_iso ε)
|
||
|
||
abbreviation inverse := @is_equivalence.G
|
||
postfix ⁻¹ := inverse
|
||
--a second notation for the inverse, which is not overloaded
|
||
postfix [parsing_only] `⁻¹F`:std.prec.max_plus := inverse
|
||
|
||
--TODO: review and change
|
||
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
|
||
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
|
||
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
|
||
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
|
||
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
|
||
definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F
|
||
definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F)
|
||
|
||
structure equivalence (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_equivalence to_functor)
|
||
|
||
structure isomorphism (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_isomorphism to_functor)
|
||
-- infix `⊣`:55 := adjoint
|
||
|
||
infix ` ⋍ `:25 := equivalence -- \backsimeq or \equiv
|
||
infix ` ≌ `:25 := isomorphism -- \backcong or \iso
|
||
|
||
definition is_equiv_of_fully_faithful [instance] [reducible] (F : C ⇒ D) [H : fully_faithful F]
|
||
(c c' : C) : is_equiv (@(to_fun_hom F) c c') :=
|
||
!H
|
||
|
||
definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (f : F c ⟶ F c')
|
||
: c ⟶ c' :=
|
||
(to_fun_hom F)⁻¹ᶠ f
|
||
|
||
definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') :=
|
||
equiv.mk _ !H
|
||
|
||
definition iso_of_F_iso_F (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) (g : F c ≅ F c') : c ≅ c' :=
|
||
begin
|
||
induction g with g G, induction G with h p q, fapply iso.MK,
|
||
{ rexact (to_fun_hom F)⁻¹ᶠ g},
|
||
{ rexact (to_fun_hom F)⁻¹ᶠ h},
|
||
{ exact abstract begin
|
||
apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp, respect_id,
|
||
right_inv (to_fun_hom F), right_inv (to_fun_hom F), p],
|
||
end end},
|
||
{ exact abstract begin
|
||
apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp, respect_id,
|
||
right_inv (to_fun_hom F), right_inv (@(to_fun_hom F) c' c), q],
|
||
end end}
|
||
end
|
||
|
||
definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact to_fun_iso F},
|
||
{ apply iso_of_F_iso_F},
|
||
{ exact abstract begin
|
||
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
|
||
esimp [iso_of_F_iso_F], apply right_inv end end},
|
||
{ exact abstract begin
|
||
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
|
||
esimp [iso_of_F_iso_F], apply right_inv end end},
|
||
end
|
||
|
||
definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) :=
|
||
!is_equivalence.is_iso_unit
|
||
|
||
definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) :=
|
||
!is_equivalence.is_iso_counit
|
||
|
||
theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
|
||
: is_hprop (is_left_adjoint F) :=
|
||
begin
|
||
apply is_hprop.mk,
|
||
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
|
||
assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
|
||
→ is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
|
||
{ intros p q r, induction p, induction q, induction r, esimp,
|
||
apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
|
||
assert lem₂ : Π (d : carrier D),
|
||
(to_fun_hom G (natural_map ε' d) ∘
|
||
natural_map η (to_fun_ob G' d)) ∘
|
||
to_fun_hom G' (natural_map ε d) ∘
|
||
natural_map η' (to_fun_ob G d) = id,
|
||
{ intro d, esimp,
|
||
rewrite [assoc],
|
||
rewrite [-assoc (G (ε' d))],
|
||
esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
|
||
esimp, rewrite [assoc],
|
||
esimp, rewrite [-assoc],
|
||
rewrite [↑functor.compose, -respect_comp G],
|
||
rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
|
||
rewrite [respect_comp G],
|
||
rewrite [assoc,▸*,-assoc (G (ε d))],
|
||
rewrite [↑functor.compose, -respect_comp G],
|
||
rewrite [H' (G d)],
|
||
rewrite [respect_id,▸*,id_right],
|
||
apply K},
|
||
assert lem₃ : Π (d : carrier D),
|
||
(to_fun_hom G' (natural_map ε d) ∘
|
||
natural_map η' (to_fun_ob G d)) ∘
|
||
to_fun_hom G (natural_map ε' d) ∘
|
||
natural_map η (to_fun_ob G' d) = id,
|
||
{ intro d, esimp,
|
||
rewrite [assoc, -assoc (G' (ε d))],
|
||
esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
|
||
esimp, rewrite [assoc], esimp, rewrite [-assoc],
|
||
rewrite [↑functor.compose, -respect_comp G'],
|
||
rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
|
||
esimp,
|
||
rewrite [respect_comp G'],
|
||
rewrite [assoc,▸*,-assoc (G' (ε' d))],
|
||
rewrite [↑functor.compose, -respect_comp G'],
|
||
rewrite [H (G' d)],
|
||
rewrite [respect_id,▸*,id_right],
|
||
apply K'},
|
||
fapply lem₁,
|
||
{ fapply functor.eq_of_pointwise_iso,
|
||
{ fapply change_natural_map,
|
||
{ exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
|
||
{ intro d, exact (G' (ε d) ∘ η' (G d))},
|
||
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
|
||
{ intro d, fconstructor,
|
||
{ exact (G (ε' d) ∘ η (G' d))},
|
||
{ exact lem₂ d },
|
||
{ exact lem₃ d }}},
|
||
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
|
||
krewrite hom_of_eq_compose_right,
|
||
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
|
||
apply nat_trans_eq, intro c, esimp,
|
||
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
|
||
esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]},
|
||
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
|
||
krewrite inv_of_eq_compose_left,
|
||
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
|
||
apply nat_trans_eq, intro d, esimp,
|
||
krewrite [respect_comp],
|
||
rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
|
||
end
|
||
|
||
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
|
||
λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)
|
||
|
||
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
|
||
λc c' f f' p, is_injective_of_is_embedding p
|
||
|
||
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
apply is_equiv_of_is_surjective_of_is_embedding,
|
||
{ apply is_embedding_of_is_injective,
|
||
intros f f' p, exact H p},
|
||
{ apply K}
|
||
end
|
||
|
||
definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
|
||
: split_essentially_surjective F :=
|
||
begin
|
||
intro d, fconstructor,
|
||
{ exact F⁻¹ d},
|
||
{ exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d}
|
||
end
|
||
|
||
definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
|
||
[H : is_iso (F f)] : is_iso f :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹},
|
||
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]},
|
||
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]},
|
||
end
|
||
|
||
definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
|
||
(f : F c ≅ F c') : c ≅ c' :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (to_fun_hom F)⁻¹ᶠ f},
|
||
{ assert H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)),
|
||
{ have H' : is_iso (to_hom f), from _, exact (right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H'},
|
||
exact reflect_is_iso F _},
|
||
end
|
||
|
||
theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
|
||
[H : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ :=
|
||
inverse_eq_inverse (idp : to_hom (@(iso.mk f) (reflect_is_iso F f)) = f)
|
||
|
||
/-
|
||
section
|
||
variables (η : Πc, G (F c) ≅ c) (ε : Πd, F (G d) ≅ d) -- we need some kind of naturality
|
||
include η ε
|
||
--definition inverse_of_unit_counit
|
||
|
||
private definition adj_η (c : C) : G (F c) ≅ c :=
|
||
to_fun_iso G (to_fun_iso F (η c)⁻¹ⁱ) ⬝i to_fun_iso G (ε (F c)) ⬝i η c
|
||
open iso
|
||
|
||
private theorem adjointify_adjH (c : C) :
|
||
to_hom (ε (F c)) ∘ F (to_hom (adj_η η ε c)⁻¹ⁱ) = id :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
private theorem adjointify_adjK (d : D) :
|
||
G (to_hom (ε d)) ∘ to_hom (adj_η η ε (G d))⁻¹ⁱ = id :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
variables (F G)
|
||
definition is_equivalence.mk : is_equivalence F :=
|
||
begin
|
||
fconstructor,
|
||
{ exact G},
|
||
{ }
|
||
end
|
||
|
||
end
|
||
|
||
definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
|
||
: fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
fapply adjointify,
|
||
{ intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c},
|
||
{ intro g, rewrite [+respect_comp,▸*],
|
||
krewrite [natural_map_inverse], xrewrite [respect_inv'],
|
||
apply inverse_comp_eq_of_eq_comp,
|
||
exact sorry /-this is basically the naturality of the counit-/ },
|
||
{ exact sorry},
|
||
end
|
||
|
||
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv (F : C ⇒ D)
|
||
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
|
||
: is_equivalence F ≃ is_weak_equivalence F :=
|
||
sorry
|
||
|
||
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
|
||
≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1),
|
||
sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
|
||
≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 :=
|
||
sorry
|
||
|
||
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
|
||
sorry
|
||
|
||
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
|
||
: is_isomorphism F :=
|
||
sorry
|
||
|
||
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
|
||
sorry
|
||
|
||
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
|
||
sorry
|
||
|
||
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
|
||
sorry
|
||
|
||
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
|
||
sorry
|
||
-/
|
||
end category
|