206 lines
7.5 KiB
Text
206 lines
7.5 KiB
Text
/-
|
|
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
The pushout of categories
|
|
|
|
The morphisms in the pushout of two categories is defined as a quotient on lists of composable
|
|
morphisms. For this we use the notion of paths in a graph.
|
|
-/
|
|
|
|
import ..category ..nat_trans hit.set_quotient algebra.relation ..groupoid algebra.graph
|
|
|
|
open eq is_trunc functor trunc sum set_quotient relation iso category sigma nat
|
|
|
|
/- we first define the categorical structure on paths in a graph -/
|
|
namespace paths
|
|
section
|
|
parameters {A : Type} {R : A → A → Type}
|
|
(Q : Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type)
|
|
variables ⦃a a' a₁ a₂ a₃ a₄ : A⦄
|
|
definition paths_trel [constructor] (l l' : paths R a a') : Prop :=
|
|
∥paths_rel Q l l'∥
|
|
|
|
local notation `S` := @paths_trel
|
|
definition paths_quotient (a a' : A) : Type := set_quotient (@S a a')
|
|
local notation `mor` := paths_quotient
|
|
local attribute paths_quotient [reducible]
|
|
|
|
definition is_reflexive_R : is_reflexive (@S a a') :=
|
|
begin constructor, intro s, apply tr, constructor end
|
|
local attribute is_reflexive_R [instance]
|
|
|
|
definition paths_compose [unfold 7 8] (g : mor a₂ a₃) (f : mor a₁ a₂) : mor a₁ a₃ :=
|
|
begin
|
|
refine quotient_binary_map _ _ g f, exact append,
|
|
intros, refine trunc_functor2 _ r s, exact rel_respect_append
|
|
end
|
|
|
|
definition paths_id [constructor] (a : A) : mor a a :=
|
|
class_of nil
|
|
|
|
local infix ` ∘∘ `:60 := paths_compose
|
|
local notation `p1` := paths_id _
|
|
|
|
theorem paths_assoc (h : mor a₃ a₄) (g : mor a₂ a₃) (f : mor a₁ a₂) :
|
|
h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f :=
|
|
begin
|
|
induction h using set_quotient.rec_prop with h,
|
|
induction g using set_quotient.rec_prop with g,
|
|
induction f using set_quotient.rec_prop with f,
|
|
rewrite [▸*, append_assoc]
|
|
end
|
|
|
|
theorem paths_id_left (f : mor a a') : p1 ∘∘ f = f :=
|
|
begin
|
|
induction f using set_quotient.rec_prop with f,
|
|
reflexivity
|
|
end
|
|
|
|
theorem paths_id_right (f : mor a a') : f ∘∘ p1 = f :=
|
|
begin
|
|
induction f using set_quotient.rec_prop with f,
|
|
rewrite [▸*, append_nil]
|
|
end
|
|
|
|
definition Precategory_paths [constructor] : Precategory :=
|
|
precategory.MK A
|
|
mor
|
|
_
|
|
paths_compose
|
|
paths_id
|
|
paths_assoc
|
|
paths_id_left
|
|
paths_id_right
|
|
|
|
/- given a way to reverse edges and some additional properties we can extend this to a
|
|
groupoid structure -/
|
|
parameters (inv : Π⦃a a' : A⦄, R a a' → R a' a)
|
|
(rel_inv : Π⦃a a' : A⦄ {l l' : paths R a a'},
|
|
Q l l' → paths_rel Q (reverse inv l) (reverse inv l'))
|
|
(li : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [inv r, r] nil)
|
|
(ri : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [r, inv r] nil)
|
|
|
|
include rel_inv li ri
|
|
definition paths_inv [unfold 8] (f : mor a a') : mor a' a :=
|
|
begin
|
|
refine quotient_unary_map (reverse inv) _ f,
|
|
intros, refine trunc_functor _ _ r, esimp,
|
|
intro s, apply rel_respect_reverse inv s rel_inv
|
|
end
|
|
|
|
local postfix `^`:max := paths_inv
|
|
|
|
theorem paths_left_inv (f : mor a₁ a₂) : f^ ∘∘ f = p1 :=
|
|
begin
|
|
induction f using set_quotient.rec_prop with f,
|
|
esimp, apply eq_of_rel, apply tr,
|
|
apply rel_left_inv, apply li
|
|
end
|
|
|
|
theorem paths_right_inv (f : mor a₁ a₂) : f ∘∘ f^ = p1 :=
|
|
begin
|
|
induction f using set_quotient.rec_prop with f,
|
|
esimp, apply eq_of_rel, apply tr,
|
|
apply rel_right_inv, apply ri
|
|
end
|
|
|
|
definition Groupoid_paths [constructor] : Groupoid :=
|
|
groupoid.MK Precategory_paths
|
|
(λa b f, is_iso.mk (paths_inv f) (paths_left_inv f) (paths_right_inv f))
|
|
|
|
end
|
|
|
|
end paths
|
|
open paths
|
|
|
|
namespace category
|
|
|
|
/- We use this for the pushout of categories -/
|
|
inductive pushout_prehom_index {C : Type} (D E : Precategory) (F : C → D) (G : C → E) :
|
|
D + E → D + E → Type :=
|
|
| iD : Π{d d' : D} (f : d ⟶ d'), pushout_prehom_index D E F G (inl d) (inl d')
|
|
| iE : Π{e e' : E} (g : e ⟶ e'), pushout_prehom_index D E F G (inr e) (inr e')
|
|
| DE : Π(c : C), pushout_prehom_index D E F G (inl (F c)) (inr (G c))
|
|
| ED : Π(c : C), pushout_prehom_index D E F G (inr (G c)) (inl (F c))
|
|
|
|
open pushout_prehom_index
|
|
|
|
definition pushout_prehom {C : Type} (D E : Precategory) (F : C → D) (G : C → E) :
|
|
D + E → D + E → Type :=
|
|
paths (pushout_prehom_index D E F G)
|
|
|
|
inductive pushout_hom_rel_index {C : Type} (D E : Precategory) (F : C → D) (G : C → E) :
|
|
Π⦃x x' : D + E⦄, pushout_prehom D E F G x x' → pushout_prehom D E F G x x' → Type :=
|
|
| DD : Π{d₁ d₂ d₃ : D} (g : d₂ ⟶ d₃) (f : d₁ ⟶ d₂),
|
|
pushout_hom_rel_index D E F G [iD F G g, iD F G f] [iD F G (g ∘ f)]
|
|
| EE : Π{e₁ e₂ e₃ : E} (g : e₂ ⟶ e₃) (f : e₁ ⟶ e₂),
|
|
pushout_hom_rel_index D E F G [iE F G g, iE F G f] [iE F G (g ∘ f)]
|
|
| DED : Π(c : C), pushout_hom_rel_index D E F G [ED F G c, DE F G c] nil
|
|
| EDE : Π(c : C), pushout_hom_rel_index D E F G [DE F G c, ED F G c] nil
|
|
| idD : Π(d : D), pushout_hom_rel_index D E F G [iD F G (ID d)] nil
|
|
| idE : Π(e : E), pushout_hom_rel_index D E F G [iE F G (ID e)] nil
|
|
|
|
open pushout_hom_rel_index
|
|
|
|
definition Precategory_pushout [constructor] {C : Type} (D E : Precategory)
|
|
(F : C → D) (G : C → E) : Precategory :=
|
|
Precategory_paths (pushout_hom_rel_index D E F G)
|
|
|
|
/- We can also take the pushout of groupoids -/
|
|
|
|
variables {C : Type} (D E : Groupoid) (F : C → D) (G : C → E)
|
|
variables ⦃x x' x₁ x₂ x₃ x₄ : Precategory_pushout D E F G⦄
|
|
|
|
definition pushout_index_inv [unfold 8] (i : pushout_prehom_index D E F G x x') :
|
|
pushout_prehom_index D E F G x' x :=
|
|
begin
|
|
induction i,
|
|
{ exact iD F G f⁻¹},
|
|
{ exact iE F G g⁻¹},
|
|
{ exact ED F G c},
|
|
{ exact DE F G c},
|
|
end
|
|
|
|
open paths.paths_rel
|
|
theorem pushout_index_reverse {l l' : pushout_prehom D E F G x x'}
|
|
(q : pushout_hom_rel_index D E F G l l') : paths_rel (pushout_hom_rel_index D E F G)
|
|
(reverse (pushout_index_inv D E F G) l) (reverse (pushout_index_inv D E F G) l') :=
|
|
begin
|
|
induction q: apply paths_rel_of_Q;
|
|
try rewrite reverse_singleton; try rewrite reverse_pair; try rewrite reverse_nil; esimp;
|
|
try rewrite [comp_inverse]; try rewrite [id_inverse]; constructor,
|
|
end
|
|
|
|
theorem pushout_index_li (i : pushout_prehom_index D E F G x x') :
|
|
paths_rel (pushout_hom_rel_index D E F G) [pushout_index_inv D E F G i, i] nil :=
|
|
begin
|
|
induction i: esimp,
|
|
{ refine rtrans (paths_rel_of_Q !DD) _,
|
|
rewrite [comp.left_inverse], exact paths_rel_of_Q !idD},
|
|
{ refine rtrans (paths_rel_of_Q !EE) _,
|
|
rewrite [comp.left_inverse], exact paths_rel_of_Q !idE},
|
|
{ exact paths_rel_of_Q !DED},
|
|
{ exact paths_rel_of_Q !EDE}
|
|
end
|
|
|
|
theorem pushout_index_ri (i : pushout_prehom_index D E F G x x') :
|
|
paths_rel (pushout_hom_rel_index D E F G) [i, pushout_index_inv D E F G i] nil :=
|
|
begin
|
|
induction i: esimp,
|
|
{ refine rtrans (paths_rel_of_Q !DD) _,
|
|
rewrite [comp.right_inverse], exact paths_rel_of_Q !idD},
|
|
{ refine rtrans (paths_rel_of_Q !EE) _,
|
|
rewrite [comp.right_inverse], exact paths_rel_of_Q !idE},
|
|
{ exact paths_rel_of_Q !EDE},
|
|
{ exact paths_rel_of_Q !DED}
|
|
end
|
|
|
|
definition Groupoid_pushout [constructor] : Groupoid :=
|
|
Groupoid_paths (pushout_hom_rel_index D E F G) (pushout_index_inv D E F G)
|
|
(pushout_index_reverse D E F G) (pushout_index_li D E F G) (pushout_index_ri D E F G)
|
|
|
|
|
|
end category
|