lean2/hott/hit/quotient.hlean
Floris van Doorn e96e4a677d feat(homotopy): prove the naive Seifert-Van Kampen theorem
Also define the pushout of categories and the pushout of groupoids
2016-07-09 10:20:21 -07:00

212 lines
8.3 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Quotients. This is a quotient without truncation for an arbitrary type-valued binary relation.
See also .set_quotient
-/
/-
The hit quotient is primitive, declared in init.hit.
The constructors are, given {A : Type} (R : A → A → Type),
* class_of : A → quotient R (A implicit, R explicit)
* eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit)
-/
import arity cubical.squareover types.arrow cubical.pathover2 types.pointed
open eq equiv sigma sigma.ops pi is_trunc pointed
namespace quotient
variables {A : Type} {R : A → A → Type}
protected definition elim {P : Type} (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a')
(x : quotient R) : P :=
quotient.rec Pc (λa a' H, pathover_of_eq (Pp H)) x
protected definition elim_on [reducible] {P : Type} (x : quotient R)
(Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P :=
quotient.elim Pc Pp x
theorem elim_eq_of_rel {P : Type} (Pc : A → P)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a')
: ap (quotient.elim Pc Pp) (eq_of_rel R H) = Pp H :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel R H)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑quotient.elim,rec_eq_of_rel],
end
protected definition rec_prop {A : Type} {R : A → A → Type} {P : quotient R → Type}
[H : Πx, is_prop (P x)] (Pc : Π(a : A), P (class_of R a)) (x : quotient R) : P x :=
quotient.rec Pc (λa a' H, !is_prop.elimo) x
protected definition elim_prop {P : Type} [H : is_prop P] (Pc : A → P) (x : quotient R) : P :=
quotient.elim Pc (λa a' H, !is_prop.elim) x
protected definition elim_type (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : quotient R → Type :=
quotient.elim Pc (λa a' H, ua (Pp H))
protected definition elim_type_on [reducible] (x : quotient R) (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type :=
quotient.elim_type Pc Pp x
theorem elim_type_eq_of_rel_fn (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel];apply cast_ua_fn
-- rename to elim_type_eq_of_rel_fn_inv
theorem elim_type_eq_of_rel_inv (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ = to_inv (Pp H) :=
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, ap_inv, elim_eq_of_rel];apply cast_ua_inv_fn
-- remove '
theorem elim_type_eq_of_rel_inv' (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (x : Pc a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ x = to_inv (Pp H) x :=
ap10 (elim_type_eq_of_rel_inv Pc Pp H) x
theorem elim_type_eq_of_rel.{u} (Pc : A → Type.{u})
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) p = to_fun (Pp H) p :=
ap10 (elim_type_eq_of_rel_fn Pc Pp H) p
definition elim_type_eq_of_rel' (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: pathover (quotient.elim_type Pc Pp) p (eq_of_rel R H) (to_fun (Pp H) p) :=
pathover_of_tr_eq (elim_type_eq_of_rel Pc Pp H p)
definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a')
: quotient R → Type :=
quotient.elim_type H.1 H.2
end quotient
attribute quotient.rec [recursor]
attribute quotient.elim [unfold 6] [recursor 6]
attribute quotient.elim_type [unfold 5]
attribute quotient.elim_on [unfold 4]
attribute quotient.elim_type_on [unfold 3]
namespace quotient
section
variables {A : Type} (R : A → A → Type)
/- The dependent universal property -/
definition quotient_pi_equiv (C : quotient R → Type) : (Πx, C x) ≃
(Σ(f : Π(a : A), C (class_of R a)), Π⦃a a' : A⦄ (H : R a a'), f a =[eq_of_rel R H] f a') :=
begin
fapply equiv.MK,
{ intro f, exact ⟨λa, f (class_of R a), λa a' H, apd f (eq_of_rel R H)⟩},
{ intro v x, induction v with i p, induction x,
exact (i a),
exact (p H)},
{ intro v, induction v with i p, esimp,
apply ap (sigma.mk i), apply eq_of_homotopy3, intro a a' H, apply rec_eq_of_rel},
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
apply eq_pathover_dep, esimp, rewrite rec_eq_of_rel, exact hrflo},
end
end
definition pquotient [constructor] {A : Type*} (R : A → A → Type) : Type* :=
pType.mk (quotient R) (class_of R pt)
/- the flattening lemma -/
namespace flattening
section
parameters {A : Type} (R : A → A → Type) (C : A → Type) (f : Π⦃a a'⦄, R a a' → C a ≃ C a')
include f
variables {a a' : A} {r : R a a'}
local abbreviation P [unfold 5] := quotient.elim_type C f
definition flattening_type : Type := Σa, C a
local abbreviation X := flattening_type
inductive flattening_rel : X → X → Type :=
| mk : Π⦃a a' : A⦄ (r : R a a') (c : C a), flattening_rel ⟨a, c⟩ ⟨a', f r c⟩
definition Ppt [constructor] (c : C a) : sigma P :=
⟨class_of R a, c⟩
definition Peq (r : R a a') (c : C a) : Ppt c = Ppt (f r c) :=
begin
fapply sigma_eq: esimp,
{ apply eq_of_rel R r},
{ refine elim_type_eq_of_rel' C f r c}
end
definition rec {Q : sigma P → Type} (Qpt : Π{a : A} (x : C a), Q (Ppt x))
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c =[Peq r c] Qpt (f r c))
(v : sigma P) : Q v :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply pi_pathover_left', esimp, intro c,
refine _ ⬝op apdt Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
rewrite ap_inv,
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
refine change_path _ (Qeq H c),
symmetry, rewrite [↑[Ppt, Peq]],
refine whisker_left _ !ap_dpair ⬝ _,
refine !dpair_eq_dpair_con⁻¹ ⬝ _, esimp,
apply ap (dpair_eq_dpair _),
esimp [elim_type_eq_of_rel',pathover_idp_of_eq],
exact !pathover_of_tr_eq_eq_concato⁻¹},
end
definition elim {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c))
(v : sigma P) : Q :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply arrow_pathover_constant_right, esimp,
intro c, exact Qeq H c ⬝ ap Qpt (elim_type_eq_of_rel C f H c)⁻¹},
end
theorem elim_Peq {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) {a a' : A} (r : R a a')
(c : C a) : ap (elim @Qpt Qeq) (Peq r c) = Qeq r c :=
begin
refine !ap_dpair_eq_dpair ⬝ _,
rewrite [apo011_eq_apo11_apd, rec_eq_of_rel, ▸*, apo011_arrow_pathover_constant_right,
↑elim_type_eq_of_rel', to_right_inv !pathover_equiv_tr_eq, ap_inv],
apply inv_con_cancel_right
end
open flattening_rel
definition flattening_lemma : sigma P ≃ quotient flattening_rel :=
begin
fapply equiv.MK,
{ refine elim _ _,
{ intro a c, exact class_of _ ⟨a, c⟩},
{ intro a a' r c, apply eq_of_rel, constructor}},
{ intro q, induction q with x x x' H,
{ exact Ppt x.2},
{ induction H, esimp, apply Peq}},
{ intro q, induction q with x x x' H: esimp,
{ induction x with a c, reflexivity},
{ induction H, esimp, apply eq_pathover, apply hdeg_square,
refine ap_compose (elim _ _) (quotient.elim _ _) _ ⬝ _,
rewrite [elim_eq_of_rel, ap_id, ▸*],
apply elim_Peq}},
{ refine rec (λa x, idp) _, intros,
apply eq_pathover, apply hdeg_square,
refine ap_compose (quotient.elim _ _) (elim _ _) _ ⬝ _,
rewrite [elim_Peq, ap_id, ▸*],
apply elim_eq_of_rel}
end
end
end flattening
end quotient