08ccd58eb6
definitions are unfolded during elaboration Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
32 lines
1.5 KiB
Text
32 lines
1.5 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Leonardo de Moura
|
|
import logic
|
|
open eq
|
|
definition refl := @eq.refl
|
|
|
|
definition transport {A : Type} {a b : A} {P : A → Type} (p : a = b) (H : P a) : P b
|
|
:= eq.rec H p
|
|
|
|
theorem transport_refl {A : Type} {a : A} {P : A → Type} (H : P a) : transport (refl a) H = H
|
|
:= refl H
|
|
|
|
reducible [off] transport
|
|
theorem transport_proof_irrel {A : Type} {a b : A} {P : A → Type} (p1 p2 : a = b) (H : P a) : transport p1 H = transport p2 H
|
|
:= refl (transport p1 H)
|
|
|
|
theorem transport_eq {A : Type} {a : A} {P : A → Type} (p : a = a) (H : P a) : transport p H = H
|
|
:= calc transport p H = transport (refl a) H : transport_proof_irrel p (refl a) H
|
|
... = H : transport_refl H
|
|
|
|
theorem dcongr {A : Type} {B : A → Type} {a b : A} (f : Π x, B x) (p : a = b) : transport p (f a) = f b
|
|
:= have H1 : ∀ p1 : a = a, transport p1 (f a) = f a, from
|
|
assume p1 : a = a, transport_eq p1 (f a),
|
|
eq.rec H1 p p
|
|
|
|
theorem transport_trans {A : Type} {a b c : A} {P : A → Type} (p1 : a = b) (p2 : b = c) (H : P a) :
|
|
transport p1 (transport p2 H) = transport (trans p1 p2) H
|
|
:= have H1 : ∀ p, transport p1 (transport p H) = transport (trans p1 p) H, from
|
|
take p, calc transport p1 (transport p H) = transport p1 H : {transport_eq p H}
|
|
... = transport (trans p1 p) H : refl (transport p1 H),
|
|
eq.rec H1 p2 p2
|