lean2/library/data/encodable.lean
2016-02-29 11:53:26 -08:00

474 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Type class for encodable types.
Note that every encodable type is countable.
-/
import data.fintype data.list data.list.sort data.sum data.nat.div data.countable data.equiv
import data.finset
open option list nat function
structure encodable [class] (A : Type) :=
(encode : A → nat) (decode : nat → option A) (encodek : ∀ a, decode (encode a) = some a)
open encodable
definition countable_of_encodable {A : Type} : encodable A → countable A :=
assume e : encodable A,
have injective encode, from
λ (a₁ a₂ : A) (h : encode a₁ = encode a₂),
have decode A (encode a₁) = decode A (encode a₂), by rewrite h,
by rewrite [*encodek at this]; injection this; assumption,
exists.intro encode this
definition encodable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] :
encodable A :=
encodable.mk
(λ a, find a (elements_of A))
(λ n, nth (elements_of A) n)
(λ a, find_nth (fintype.complete a))
definition encodable_nat [instance] : encodable nat :=
encodable.mk (λ a, a) (λ n, some n) (λ a, rfl)
definition encodable_option [instance] {A : Type} [h : encodable A] : encodable (option A) :=
encodable.mk
(λ o, match o with
| some a := succ (encode a)
| none := 0
end)
(λ n, if n = 0 then some none else some (decode A (pred n)))
(λ o,
begin
cases o with a,
begin esimp end,
begin esimp, rewrite [if_neg !succ_ne_zero, encodable.encodek] end
end)
section sum
variables {A B : Type}
variables [h₁ : encodable A] [h₂ : encodable B]
include h₁ h₂
private definition encode_sum : sum A B → nat
| (sum.inl a) := 2 * encode a
| (sum.inr b) := 2 * encode b + 1
private definition decode_sum (n : nat) : option (sum A B) :=
if n % 2 = 0 then
match decode A (n / 2) with
| some a := some (sum.inl a)
| none := none
end
else
match decode B ((n - 1) / 2) with
| some b := some (sum.inr b)
| none := none
end
open decidable
private theorem decode_encode_sum : ∀ s : sum A B, decode_sum (encode_sum s) = some s
| (sum.inl a) :=
have aux : 2 > (0:nat), from dec_trivial,
begin
esimp [encode_sum, decode_sum],
rewrite [mul_mod_right, if_pos (eq.refl (0 : nat)), nat.mul_div_cancel_left _ aux,
encodable.encodek]
end
| (sum.inr b) :=
have aux₁ : 2 > (0:nat), from dec_trivial,
have aux₂ : 1 % 2 = (1:nat), by rewrite [nat.mod_def],
have aux₃ : 1 ≠ (0:nat), from dec_trivial,
begin
esimp [encode_sum, decode_sum],
rewrite [add.comm, add_mul_mod_self_left, aux₂, if_neg aux₃, nat.add_sub_cancel_left,
nat.mul_div_cancel_left _ aux₁, encodable.encodek]
end
definition encodable_sum [instance] : encodable (sum A B) :=
encodable.mk
(λ s, encode_sum s)
(λ n, decode_sum n)
(λ s, decode_encode_sum s)
end sum
section prod
variables {A B : Type}
variables [h₁ : encodable A] [h₂ : encodable B]
include h₁ h₂
private definition encode_prod : A × B → nat
| (a, b) := mkpair (encode a) (encode b)
private definition decode_prod (n : nat) : option (A × B) :=
match unpair n with
| (n₁, n₂) :=
match decode A n₁ with
| some a :=
match decode B n₂ with
| some b := some (a, b)
| none := none
end
| none := none
end
end
private theorem decode_encode_prod : ∀ p : A × B, decode_prod (encode_prod p) = some p
| (a, b) :=
begin
esimp [encode_prod, decode_prod, prod.cases_on],
rewrite [unpair_mkpair],
esimp,
rewrite [*encodable.encodek]
end
definition encodable_product [instance] : encodable (A × B) :=
encodable.mk
encode_prod
decode_prod
decode_encode_prod
end prod
section list
variables {A : Type}
variables [h : encodable A]
include h
private definition encode_list_core : list A → nat
| [] := 0
| (a::l) := mkpair (encode a) (encode_list_core l)
private theorem encode_list_core_cons (a : A) (l : list A) : encode_list_core (a::l) = mkpair (encode a) (encode_list_core l) :=
rfl
private definition encode_list (l : list A) : nat :=
mkpair (length l) (encode_list_core l)
private definition decode_list_core : nat → nat → option (list A)
| 0 v := some []
| (succ n) v :=
match unpair v with
| (v₁, v₂) :=
match decode A v₁ with
| some a :=
match decode_list_core n v₂ with
| some l := some (a::l)
| none := none
end
| none := none
end
end
private theorem decode_list_core_succ (n v : nat) :
decode_list_core (succ n) v =
match unpair v with
| (v₁, v₂) :=
match decode A v₁ with
| some a :=
match decode_list_core n v₂ with
| some l := some (a::l)
| none := none
end
| none := none
end
end
:= rfl
private definition decode_list (n : nat) : option (list A) :=
match unpair n with
| (l, v) := decode_list_core l v
end
private theorem decode_encode_list_core : ∀ l : list A, decode_list_core (length l) (encode_list_core l) = some l
| [] := rfl
| (a::l) :=
begin
rewrite [encode_list_core_cons, length_cons, add_one (length l), decode_list_core_succ],
rewrite [unpair_mkpair],
esimp [prod.cases_on],
rewrite [decode_encode_list_core l],
rewrite [encodable.encodek],
end
private theorem decode_encode_list (l : list A) : decode_list (encode_list l) = some l :=
begin
esimp [encode_list, decode_list],
rewrite [unpair_mkpair],
esimp [prod.cases_on],
apply decode_encode_list_core
end
definition encodable_list [instance] : encodable (list A) :=
encodable.mk
encode_list
decode_list
decode_encode_list
end list
section finset
variable {A : Type}
variable [encA : encodable A]
include encA
private definition enle (a b : A) : Prop := encode a ≤ encode b
private lemma enle.refl (a : A) : enle a a :=
!le.refl
private lemma enle.trans (a b c : A) : enle a b → enle b c → enle a c :=
assume h₁ h₂, le.trans h₁ h₂
private lemma enle.total (a b : A) : enle a b enle b a :=
!le.total
private lemma enle.antisymm (a b : A) : enle a b → enle b a → a = b :=
assume h₁ h₂,
have encode a = encode b, from le.antisymm h₁ h₂,
have decode A (encode a) = decode A (encode b), by rewrite this,
have some a = some b, by rewrite [*encodek at this]; exact this,
option.no_confusion this (λ e, e)
private definition decidable_enle [instance] (a b : A) : decidable (enle a b) :=
decidable_le (encode a) (encode b)
variables [decA : decidable_eq A]
include decA
private definition ensort (l : list A) : list A :=
sort enle l
open subtype perm
private lemma sorted_eq_of_perm {l₁ l₂ : list A} (h : l₁ ~ l₂) : ensort l₁ = ensort l₂ :=
list.sort_eq_of_perm_core enle.total enle.trans enle.refl enle.antisymm h
private definition encode_finset (s : finset A) : nat :=
quot.lift_on s
(λ l, encode (ensort (elt_of l)))
(λ l₁ l₂ p,
have elt_of l₁ ~ elt_of l₂, from p,
have ensort (elt_of l₁) = ensort (elt_of l₂), from sorted_eq_of_perm this,
by rewrite this)
private definition decode_finset (n : nat) : option (finset A) :=
match decode (list A) n with
| some l₁ := some (finset.to_finset l₁)
| none := none
end
private theorem decode_encode_finset (s : finset A) : decode_finset (encode_finset s) = some s :=
quot.induction_on s (λ l,
begin
unfold encode_finset, unfold decode_finset, rewrite encodek, esimp, congruence,
apply quot.sound, cases l with l nd,
show erase_dup (ensort l) ~ l, from
have nodup (ensort l), from nodup_of_perm_of_nodup (perm.symm !sort_perm) nd,
calc erase_dup (ensort l) = ensort l : erase_dup_eq_of_nodup this
... ~ l : sort_perm
end)
definition encodable_finset [instance] : encodable (finset A) :=
encodable.mk
encode_finset
decode_finset
decode_encode_finset
end finset
section subtype
open subtype decidable
variable {A : Type}
variable {P : A → Prop}
variable [encA : encodable A]
variable [decP : decidable_pred P]
include encA
private definition encode_subtype : {a : A | P a} → nat
| (tag v h) := encode v
include decP
private definition decode_subtype (v : nat) : option {a : A | P a} :=
match decode A v with
| some a := if h : P a then some (tag a h) else none
| none := none
end
private lemma decode_encode_subtype : ∀ s : {a : A | P a}, decode_subtype (encode_subtype s) = some s
| (tag v h) :=
begin
unfold [encode_subtype, decode_subtype], rewrite encodek, esimp,
rewrite [dif_pos h]
end
definition encodable_subtype [instance] : encodable {a : A | P a} :=
encodable.mk
encode_subtype
decode_subtype
decode_encode_subtype
end subtype
definition encodable_of_left_injection
{A B : Type} [h₁ : encodable A]
(f : B → A) (finv : A → option B) (linv : ∀ b, finv (f b) = some b) : encodable B :=
encodable.mk
(λ b, encode (f b))
(λ n,
match decode A n with
| some a := finv a
| none := none
end)
(λ b,
begin
esimp,
rewrite [encodable.encodek],
esimp [option.cases_on],
rewrite [linv]
end)
section
open equiv
definition encodable_of_equiv {A B : Type} [h : encodable A] : A ≃ B → encodable B
| (mk f g l r) :=
encodable_of_left_injection g (λ a, some (f a))
(λ b, by rewrite r; reflexivity)
end
/-
Choice function for encodable types and decidable predicates.
We provide the following API
choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A :=
choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
-/
section find_a
parameters {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p]
include c
include d
private definition pn (n : nat) : Prop :=
match decode A n with
| some a := p a
| none := false
end
private definition decidable_pn : decidable_pred pn :=
λ n,
match decode A n with
| some a := λ e : decode A n = some a,
match d a with
| decidable.inl t :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inl t)
end
| decidable.inr f :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inr f)
end
end
| none := λ e : decode A n = none,
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact decidable_false
end
end (eq.refl (decode A n))
private definition ex_pn_of_ex : (∃ x, p x) → (∃ x, pn x) :=
assume ex,
obtain (w : A) (pw : p w), from ex,
exists.intro (encode w)
begin
unfold pn, rewrite [encodek], esimp, exact pw
end
private lemma decode_ne_none_of_pn {n : nat} : pn n → decode A n ≠ none :=
assume pnn e,
begin
rewrite [▸ (match decode A n with | some a := p a | none := false end) at pnn],
rewrite [e at pnn], esimp [option.cases_on] at pnn,
exact (false.elim pnn)
end
open subtype
private definition of_nat (n : nat) : pn n → { a : A | p a } :=
match decode A n with
| some a := λ (e : decode A n = some a),
begin
unfold pn, rewrite e, esimp [option.cases_on], intro pa,
exact (tag a pa)
end
| none := λ (e : decode A n = none) h, absurd e (decode_ne_none_of_pn h)
end (eq.refl (decode A n))
private definition find_a : (∃ x, p x) → {a : A | p a} :=
suppose ∃ x, p x,
have ∃ x, pn x, from ex_pn_of_ex this,
let r := @nat.find _ decidable_pn this in
have pn r, from @nat.find_spec pn decidable_pn this,
of_nat r this
end find_a
namespace encodable
open subtype
definition choose {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] : (∃ x, p x) → A :=
assume ex, elt_of (find_a ex)
theorem choose_spec {A : Type} {p : A → Prop} [c : encodable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
has_property (find_a ex)
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (R x y)]
: (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x) :=
assume H,
have ∀x, R x (choose (H x)), from take x, choose_spec (H x),
exists.intro _ this
theorem skolem {A : Type} {B : A → Type} {P : Π x, B x → Prop} [c : Π a, encodable (B a)] [d : ∀ x y, decidable (P x y)]
: (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) :=
iff.intro
(suppose (∀ x, ∃y, P x y), axiom_of_choice this)
(suppose (∃ f, (∀x, P x (f x))),
take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from this,
exists.intro (fw x) (Hw x))
end encodable
namespace quot
section
open setoid encodable
parameter {A : Type}
parameter {s : setoid A}
parameter [decR : ∀ a b : A, decidable (a ≈ b)]
parameter [encA : encodable A]
include decR
include encA
-- Choose equivalence class representative
definition rep (q : quot s) : A :=
choose (exists_rep q)
theorem rep_spec (q : quot s) : ⟦rep q⟧ = q :=
choose_spec (exists_rep q)
private definition encode_quot (q : quot s) : nat :=
encode (rep q)
private definition decode_quot (n : nat) : option (quot s) :=
match decode A n with
| some a := some ⟦ a ⟧
| none := none
end
private lemma decode_encode_quot (q : quot s) : decode_quot (encode_quot q) = some q :=
quot.induction_on q (λ l, begin unfold [encode_quot, decode_quot], rewrite encodek, esimp, rewrite rep_spec end)
definition encodable_quot : encodable (quot s) :=
encodable.mk
encode_quot
decode_quot
decode_encode_quot
end
end quot
attribute quot.encodable_quot [instance]