lean2/library/data/tuple.lean
2016-12-10 22:34:32 +01:00

321 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Tuples are lists of a fixed size.
It is implemented as a subtype.
-/
import logic data.list data.fin
open nat list subtype function
definition tuple [reducible] (A : Type) (n : nat) := {l : list A | length l = n}
namespace tuple
variables {A B C : Type}
theorem induction_on [recursor 4] {P : ∀ {n}, tuple A n → Prop}
: ∀ {n} (v : tuple A n), (∀ (l : list A) {n : nat} (h : length l = n), P (tag l h)) → P v
| n (tag l h) H := @H l n h
definition nil : tuple A 0 :=
tag [] rfl
lemma length_succ {n : nat} {l : list A} (a : A) : length l = n → length (a::l) = succ n :=
λ h, congr_arg succ h
definition cons {n : nat} : A → tuple A n → tuple A (succ n)
| a (tag v h) := tag (a::v) (length_succ a h)
notation a :: b := cons a b
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (tuple A n)
| 0 := inhabited.mk nil
| (succ n) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
protected definition has_decidable_eq [instance] [h : decidable_eq A] : ∀ (n : nat), decidable_eq (tuple A n) :=
λ n, subtype.has_decidable_eq
definition head {n : nat} : tuple A (succ n) → A
| (tag [] h) := by contradiction
| (tag (a::v) h) := a
definition tail {n : nat} : tuple A (succ n) → tuple A n
| (tag [] h) := by contradiction
| (tag (a::v) h) := tag v (succ.inj h)
theorem head_cons {n : nat} (a : A) (v : tuple A n) : head (a :: v) = a :=
by induction v; reflexivity
theorem tail_cons {n : nat} (a : A) (v : tuple A n) : tail (a :: v) = v :=
by induction v; reflexivity
theorem head_lcons {n : nat} (a : A) (l : list A) (h : length (a::l) = succ n) : head (tag (a::l) h) = a :=
rfl
theorem tail_lcons {n : nat} (a : A) (l : list A) (h : length (a::l) = succ n) : tail (tag (a::l) h) = tag l (succ.inj h) :=
rfl
definition last {n : nat} : tuple A (succ n) → A
| (tag l h) := list.last l (ne_nil_of_length_eq_succ h)
theorem eta : ∀ {n : nat} (v : tuple A (succ n)), head v :: tail v = v
| 0 (tag [] h) := by contradiction
| 0 (tag (a::l) h) := rfl
| (n+1) (tag [] h) := by contradiction
| (n+1) (tag (a::l) h) := rfl
definition of_list (l : list A) : tuple A (list.length l) :=
tag l rfl
definition to_list {n : nat} : tuple A n → list A
| (tag l h) := l
theorem to_list_of_list (l : list A) : to_list (of_list l) = l :=
rfl
theorem to_list_nil : to_list nil = ([] : list A) :=
rfl
theorem length_to_list {n : nat} : ∀ (v : tuple A n), list.length (to_list v) = n
| (tag l h) := h
theorem heq_of_list_eq {n m} : ∀ {v₁ : tuple A n} {v₂ : tuple A m}, to_list v₁ = to_list v₂ → n = m → v₁ == v₂
| (tag l₁ h₁) (tag l₂ h₂) e₁ e₂ := begin
clear heq_of_list_eq,
subst e₂, subst h₁,
unfold to_list at e₁,
subst l₁
end
theorem list_eq_of_heq {n m} {v₁ : tuple A n} {v₂ : tuple A m} : v₁ == v₂ → n = m → to_list v₁ = to_list v₂ :=
begin
intro h₁ h₂, revert v₁ v₂ h₁,
subst n, intro v₁ v₂ h₁, rewrite [eq_of_heq h₁]
end
theorem of_list_to_list {n : nat} (v : tuple A n) : of_list (to_list v) == v :=
begin
apply heq_of_list_eq, rewrite to_list_of_list, rewrite length_to_list
end
/- append -/
definition append {n m : nat} : tuple A n → tuple A m → tuple A (n + m)
| (tag l₁ h₁) (tag l₂ h₂) := tag (list.append l₁ l₂) (by rewrite [length_append, h₁, h₂])
infix ++ := append
open eq.ops
lemma push_eq_rec : ∀ {n m : nat} {l : list A} (h₁ : n = m) (h₂ : length l = n), h₁ ▹ (tag l h₂) = tag l (h₁ ▹ h₂)
| n n l (eq.refl n) h₂ := rfl
theorem append_nil_right {n : nat} (v : tuple A n) : v ++ nil = v :=
induction_on v (λ l n h, by unfold [tuple.append, tuple.nil]; congruence; apply list.append_nil_right)
theorem append_nil_left {n : nat} (v : tuple A n) : !zero_add ▹ (nil ++ v) = v :=
induction_on v (λ l n h, begin unfold [tuple.append, tuple.nil], rewrite [push_eq_rec] end)
theorem append_nil_left_heq {n : nat} (v : tuple A n) : nil ++ v == v :=
heq_of_eq_rec_left !zero_add (append_nil_left v)
theorem append.assoc {n₁ n₂ n₃} : ∀ (v₁ : tuple A n₁) (v₂ : tuple A n₂) (v₃ : tuple A n₃), !add.assoc ▹ ((v₁ ++ v₂) ++ v₃) = v₁ ++ (v₂ ++ v₃)
| (tag l₁ h₁) (tag l₂ h₂) (tag l₃ h₃) := begin
unfold tuple.append, rewrite push_eq_rec,
congruence,
apply list.append.assoc
end
theorem append.assoc_heq {n₁ n₂ n₃} (v₁ : tuple A n₁) (v₂ : tuple A n₂) (v₃ : tuple A n₃) : (v₁ ++ v₂) ++ v₃ == v₁ ++ (v₂ ++ v₃) :=
heq_of_eq_rec_left !add.assoc (append.assoc v₁ v₂ v₃)
/- reverse -/
definition reverse {n : nat} : tuple A n → tuple A n
| (tag l h) := tag (list.reverse l) (by rewrite [length_reverse, h])
theorem reverse_reverse {n : nat} (v : tuple A n) : reverse (reverse v) = v :=
induction_on v (λ l n h, begin unfold reverse, congruence, apply list.reverse_reverse end)
theorem tuple0_eq_nil : ∀ (v : tuple A 0), v = nil
| (tag [] h) := rfl
| (tag (a::l) h) := by contradiction
/- mem -/
definition mem {n : nat} (a : A) (v : tuple A n) : Prop :=
a ∈ elt_of v
notation e ∈ s := mem e s
notation e ∉ s := ¬ e ∈ s
theorem not_mem_nil (a : A) : a ∉ nil :=
list.not_mem_nil a
theorem mem_cons [simp] {n : nat} (a : A) (v : tuple A n) : a ∈ a :: v :=
induction_on v (λ l n h, !list.mem_cons)
theorem mem_cons_of_mem {n : nat} (y : A) {x : A} {v : tuple A n} : x ∈ v → x ∈ y :: v :=
induction_on v (λ l n h₁ h₂, list.mem_cons_of_mem y h₂)
theorem eq_or_mem_of_mem_cons {n : nat} {x y : A} {v : tuple A n} : x ∈ y::v → x = y x ∈ v :=
induction_on v (λ l n h₁ h₂, eq_or_mem_of_mem_cons h₂)
theorem mem_singleton {n : nat} {x a : A} : x ∈ (a::nil : tuple A 1) → x = a :=
assume h, list.mem_singleton h
/- map -/
definition map {n : nat} (f : A → B) : tuple A n → tuple B n
| (tag l h) := tag (list.map f l) (by clear map; substvars; rewrite length_map)
theorem map_nil (f : A → B) : map f nil = nil :=
rfl
theorem map_cons {n : nat} (f : A → B) (a : A) (v : tuple A n) : map f (a::v) = f a :: map f v :=
by induction v; reflexivity
theorem map_tag {n : nat} (f : A → B) (l : list A) (h : length l = n)
: map f (tag l h) = tag (list.map f l) (by substvars; rewrite length_map) :=
by reflexivity
theorem map_map {n : nat} (g : B → C) (f : A → B) (v : tuple A n) : map g (map f v) = map (g ∘ f) v :=
begin cases v, rewrite *map_tag, apply subtype.eq, apply list.map_map end
theorem map_id {n : nat} (v : tuple A n) : map id v = v :=
begin induction v, unfold map, congruence, apply list.map_id end
theorem mem_map {n : nat} {a : A} {v : tuple A n} (f : A → B) : a ∈ v → f a ∈ map f v :=
begin induction v, unfold map, apply list.mem_map end
theorem exists_of_mem_map {n : nat} {f : A → B} {b : B} {v : tuple A n} : b ∈ map f v → ∃a, a ∈ v ∧ f a = b :=
begin induction v, unfold map, apply list.exists_of_mem_map end
theorem eq_of_map_const {n : nat} {b₁ b₂ : B} {v : tuple A n} : b₁ ∈ map (const A b₂) v → b₁ = b₂ :=
begin induction v, unfold map, apply list.eq_of_map_const end
/- product -/
definition product {n m : nat} : tuple A n → tuple B m → tuple (A × B) (n * m)
| (tag l₁ h₁) (tag l₂ h₂) := tag (list.product l₁ l₂) (by rewrite [length_product, h₁, h₂])
theorem nil_product {m : nat} (v : tuple B m) : !zero_mul ▹ product (@nil A) v = nil :=
begin induction v, unfold [nil, product], rewrite push_eq_rec end
theorem nil_product_heq {m : nat} (v : tuple B m) : product (@nil A) v == (@nil (A × B)) :=
heq_of_eq_rec_left _ (nil_product v)
theorem product_nil {n : nat} (v : tuple A n) : product v (@nil B) = nil :=
begin induction v, unfold [nil, product], congruence, apply list.product_nil end
theorem mem_product {n m : nat} {a : A} {b : B} {v₁ : tuple A n} {v₂ : tuple B m} : a ∈ v₁ → b ∈ v₂ → (a, b) ∈ product v₁ v₂ :=
begin cases v₁, cases v₂, unfold product, apply list.mem_product end
theorem mem_of_mem_product_left {n m : nat} {a : A} {b : B} {v₁ : tuple A n} {v₂ : tuple B m} : (a, b) ∈ product v₁ v₂ → a ∈ v₁ :=
begin cases v₁, cases v₂, unfold product, apply list.mem_of_mem_product_left end
theorem mem_of_mem_product_right {n m : nat} {a : A} {b : B} {v₁ : tuple A n} {v₂ : tuple B m} : (a, b) ∈ product v₁ v₂ → b ∈ v₂ :=
begin cases v₁, cases v₂, unfold product, apply list.mem_of_mem_product_right end
/- ith -/
open fin
definition ith {n : nat} : tuple A n → fin n → A
| (tag l h₁) (mk i h₂) := list.ith l i (by rewrite h₁; exact h₂)
lemma ith_zero {n : nat} (a : A) (v : tuple A n) (h : 0 < succ n) : ith (a::v) (mk 0 h) = a :=
by induction v; reflexivity
lemma ith_fin_zero {n : nat} (a : A) (v : tuple A n) : ith (a::v) (fin.zero n) = a :=
by unfold fin.zero; apply ith_zero
lemma ith_succ {n : nat} (a : A) (v : tuple A n) (i : nat) (h : succ i < succ n)
: ith (a::v) (mk (succ i) h) = ith v (mk_pred i h) :=
by induction v; reflexivity
lemma ith_fin_succ {n : nat} (a : A) (v : tuple A n) (i : fin n)
: ith (a::v) (succ i) = ith v i :=
begin cases i, unfold fin.succ, rewrite ith_succ end
lemma ith_zero_eq_head {n : nat} (v : tuple A (nat.succ n)) : ith v (fin.zero n) = head v :=
by rewrite [-eta v, ith_fin_zero, head_cons]
lemma ith_succ_eq_ith_tail {n : nat} (v : tuple A (nat.succ n)) (i : fin n) : ith v (succ i) = ith (tail v) i :=
by rewrite [-eta v, ith_fin_succ, tail_cons]
protected lemma ext {n : nat} (v₁ v₂ : tuple A n) (h : ∀ i : fin n, ith v₁ i = ith v₂ i) : v₁ = v₂ :=
begin
induction n with n ih,
rewrite [tuple0_eq_nil v₁, tuple0_eq_nil v₂],
rewrite [-eta v₁, -eta v₂], congruence,
show head v₁ = head v₂, by rewrite [-ith_zero_eq_head, -ith_zero_eq_head]; apply h,
have ∀ i : fin n, ith (tail v₁) i = ith (tail v₂) i, from
take i, by rewrite [-ith_succ_eq_ith_tail, -ith_succ_eq_ith_tail]; apply h,
show tail v₁ = tail v₂, from ih _ _ this
end
/- tabulate -/
definition tabulate : Π {n : nat}, (fin n → A) → tuple A n
| 0 f := nil
| (n+1) f := f (fin.zero n) :: tabulate (λ i : fin n, f (succ i))
theorem ith_tabulate {n : nat} (f : fin n → A) (i : fin n) : ith (tabulate f) i = f i :=
begin
induction n with n ih,
apply elim0 i,
cases i with v hlt, cases v,
{unfold tabulate, rewrite ith_zero},
{unfold tabulate, rewrite [ith_succ, ih]}
end
variable {n : }
definition replicate (n : ) : A → tuple A n
| a := tag (list.replicate n a) (length_replicate n a)
definition dropn : Π (i:), tuple A n → tuple A (n - i)
| i (tag l p) := tag (list.dropn i l) (p ▸ list.length_dropn i l)
definition firstn : Π (i:), tuple A n → tuple A (min i n)
| i (tag l p) :=
let q := calc list.length (list.firstn i l)
= min i (list.length l) : list.length_firstn_eq
... = min i n : p in
tag (list.firstn i l) q
definition map₂ : (A → B → C) → tuple A n → tuple B n → tuple C n
| f (tag x px) (tag y py) :=
let z : list C := list.map₂ f x y in
let p : list.length z = n := calc
list.length z = min (list.length x) (list.length y) : list.length_map₂
... = min n n : by rewrite [px, py]
... = n : min_self in
tag z p
section accum
open prod
variable {S : Type}
definition mapAccumR
: (A → S → S × B) → tuple A n → S → S × tuple B n
| f (tag x px) c :=
let z := list.mapAccumR f x c in
let p := calc
list.length (pr₂ (list.mapAccumR f x c))
= length x : length_mapAccumR
... = n : px in
(pr₁ z, tag (pr₂ z) p)
definition mapAccumR₂
: (A → B → S → S × C) → tuple A n → tuple B n → S → S × tuple C n
| f (tag x px) (tag y py) c :=
let z := list.mapAccumR₂ f x y c in
let p := calc
list.length (pr₂ (list.mapAccumR₂ f x y c))
= min (length x) (length y) : length_mapAccumR₂
... = n : by rewrite [ px, py, min_self ] in
(pr₁ z, tag (pr₂ z) p)
end accum
end tuple