0d97fff280
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
302 lines
13 KiB
C++
302 lines
13 KiB
C++
/*
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Author: Leonardo de Moura
|
||
*/
|
||
#include <string>
|
||
#include "util/interrupt.h"
|
||
#include "kernel/expr.h"
|
||
#include "kernel/justification.h"
|
||
#include "kernel/kernel_exception.h"
|
||
#include "kernel/free_vars.h"
|
||
#include "library/kernel_bindings.h"
|
||
#include "library/kernel_serializer.h"
|
||
#include "library/bin_app.h"
|
||
|
||
namespace lean {
|
||
static name g_resolve_macro_name("resolve");
|
||
static std::string g_resolve_opcode("Res");
|
||
|
||
// Declarations used by the resolve_macro
|
||
static expr g_or(Const("or"));
|
||
static expr g_not(Const("not"));
|
||
static expr g_false(Const("false"));
|
||
static expr g_or_elim(Const("or_elim"));
|
||
static expr g_or_intro_left(Const("or_intro_left"));
|
||
static expr g_or_intro_right(Const("or_intro_right"));
|
||
static expr g_absurd_elim(Const("absurd_elim"));
|
||
static expr g_var_0(mk_var(0));
|
||
/**
|
||
\brief Resolve macro encodes a simple propositional resolution step.
|
||
It takes three arguments:
|
||
- t : Prop
|
||
- H1 : ( ... ∨ t ∨ ...)
|
||
- H2 : ( ... ∨ (¬ t) ∨ ...)
|
||
|
||
The resultant type is the propositional resolvent of the clauses proved by H1 and H2.
|
||
For example:
|
||
(resolve l ((A ∨ l) ∨ B) ((C ∨ A) ∨ (¬ l))) : (A ∨ (B ∨ C))
|
||
|
||
The macro assumes the environment contains the declarations
|
||
or (a b : Prop) : Prop
|
||
not (a : Prop) : Prop
|
||
false : Prop
|
||
|
||
It also assumes that the symbol 'or' is opaque. 'not' and 'false' do not need to be opaque.
|
||
|
||
The macro can be expanded into a term built using
|
||
or_elim {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
||
or_intro_left {a : Prop} (H : a) (b : Prop) : a ∨ b
|
||
or_intro_right {b : Prop} (a : Prop) (H : b) : a ∨ b
|
||
absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬ a) : b
|
||
Thus, the environment must also contain these declarations.
|
||
|
||
Note that there is no classical reasoning being used. Thus, the macro can be used even
|
||
in an environment where the classical axioms were not imported.
|
||
|
||
When inferring the type, the macro will put literals in weak head normal form.
|
||
It needs to do that to be able to check whether a term is a nested-or or not.
|
||
|
||
The macro also assumes the literals occurring in the types of H1 and H2 are not
|
||
metavariables.
|
||
|
||
The resolve macro is mainly used by automation that produces resolution proofs.
|
||
It may be used also by users to avoid tedious steps.
|
||
*/
|
||
class resolve_macro_definition_cell : public macro_definition_cell {
|
||
simple_delayed_justification m_dummy_jst;
|
||
public:
|
||
resolve_macro_definition_cell():m_dummy_jst([] { return mk_justification("resolve macro"); }) {
|
||
m_dummy_jst.get(); // the delayed_justification may be accessed by different threads, thus we force its initialization.
|
||
}
|
||
|
||
// The following const cast is say because we already initialized the delayed justification in the constructor.
|
||
delayed_justification & jst() const { return const_cast<simple_delayed_justification&>(m_dummy_jst); }
|
||
|
||
static void check_num_args(environment const & env, expr const & m) {
|
||
lean_assert(is_macro(m));
|
||
if (macro_num_args(m) != 3)
|
||
throw_kernel_exception(env, "invalid number of arguments for resolve macro", m);
|
||
}
|
||
|
||
// ----------------------------------------------
|
||
// Begin of resolve_macro get_type implementation
|
||
// This section of code is trusted when the environment has trust_level == 1
|
||
|
||
bool is_def_eq(expr const & l1, expr const & l2, extension_context & ctx) const { return ctx.is_def_eq(l1, l2, jst()); }
|
||
|
||
/** \brief Return true if \c ls already contains a literal that is definitionally equal to \c l */
|
||
bool already_contains(expr const & l, buffer<expr> const & ls, extension_context & ctx) const {
|
||
for (expr const & old_l : ls) {
|
||
if (is_def_eq(l, old_l, ctx))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool is_or(expr const & a, expr & lhs, expr & rhs) const { return is_bin_app(a, g_or, lhs, rhs); }
|
||
|
||
bool collect(expr const & lhs, expr const & rhs, expr const & l, buffer<expr> & R, extension_context & ctx) const {
|
||
bool r1 = collect(lhs, l, R, ctx);
|
||
bool r2 = collect(rhs, l, R, ctx);
|
||
return r1 || r2;
|
||
}
|
||
|
||
bool collect(expr cls, expr const & l, buffer<expr> & R, extension_context & ctx) const {
|
||
check_system("resolve macro");
|
||
expr lhs, rhs;
|
||
if (is_or(cls, lhs, rhs)) {
|
||
return collect(lhs, rhs, l, R, ctx);
|
||
} else {
|
||
cls = ctx.whnf(cls);
|
||
if (is_or(cls, lhs, rhs)) {
|
||
return collect(lhs, rhs, l, R, ctx);
|
||
} else if (is_def_eq(cls, l, ctx)) {
|
||
return true; // found literal l
|
||
} else {
|
||
if (!already_contains(cls, R, ctx))
|
||
R.push_back(cls);
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
virtual expr get_type(expr const & m, expr const * arg_types, extension_context & ctx) const {
|
||
environment const & env = ctx.env();
|
||
check_num_args(env, m);
|
||
expr l = ctx.whnf(macro_arg(m, 0));
|
||
expr not_l = ctx.whnf(g_not(l));
|
||
expr C1 = arg_types[1];
|
||
expr C2 = arg_types[2];
|
||
buffer<expr> R; // resolvent
|
||
if (!collect(C1, l, R, ctx))
|
||
throw_kernel_exception(env, "invalid resolve macro, positive literal was not found", m);
|
||
if (!collect(C2, not_l, R, ctx))
|
||
throw_kernel_exception(env, "invalid resolve macro, negative literal was not found", m);
|
||
return mk_bin_rop(g_or, g_false, R.size(), R.data());
|
||
}
|
||
|
||
// End of resolve_macro get_type implementation
|
||
// ----------------------------------------------
|
||
|
||
// The following methods are not part of the TRUSTED code base
|
||
// They are used when we set trust_level = 0.
|
||
// In this case, the type checker invokes expand to double check that get_type
|
||
// and the result returned by expand have the same type.
|
||
|
||
virtual optional<expr> expand(expr const & m, extension_context & ctx) const {
|
||
environment const & env = ctx.env();
|
||
check_num_args(env, m);
|
||
expr l = ctx.whnf(macro_arg(m, 0));
|
||
expr not_l = ctx.whnf(g_not(l));
|
||
expr H1 = macro_arg(m, 1);
|
||
expr H2 = macro_arg(m, 2);
|
||
expr C1 = ctx.infer_type(H1);
|
||
expr C2 = ctx.infer_type(H2);
|
||
expr arg_types[3] = { expr() /* get_type() does not use first argument */, C1, C2 };
|
||
expr R = get_type(m, arg_types, ctx);
|
||
return some_expr(mk_or_elim_tree1(l, not_l, C1, H1, C2, H2, R, ctx));
|
||
}
|
||
|
||
bool is_or_app(expr const & a) const { return is_bin_app(a, g_or); }
|
||
|
||
/** \brief Given l : H, and R == (or ... l ...), create a proof term for R using or_intro_left and or_intro_right */
|
||
expr mk_or_intro(expr const & l, expr const & H, expr const & R, extension_context & ctx) const {
|
||
check_system("resolve macro");
|
||
if (is_or_app(R)) {
|
||
expr lhs = app_arg(app_fn(R));
|
||
expr rhs = app_arg(R);
|
||
// or_intro_left {a : Prop} (H : a) (b : Prop) : a ∨ b
|
||
// or_intro_right {b : Prop} (a : Prop) (H : b) : a ∨ b
|
||
if (is_def_eq(l, lhs, ctx)) {
|
||
return g_or_intro_left(l, H, rhs);
|
||
} else if (is_def_eq(l, rhs, ctx)) {
|
||
return g_or_intro_right(l, lhs, H);
|
||
} else {
|
||
return g_or_intro_right(rhs, lhs, mk_or_intro(l, H, rhs, ctx));
|
||
}
|
||
} else if (is_def_eq(l, R, ctx)) {
|
||
return H;
|
||
} else {
|
||
throw_kernel_exception(ctx.env(), "bug in resolve macro");
|
||
}
|
||
}
|
||
|
||
static expr lift(expr const & e) { return lift_free_vars(e, 1); }
|
||
|
||
/**
|
||
\brief Given
|
||
C1 : H1, where C1 contains l
|
||
C2 : H2, where C2 contains not_l
|
||
Return a proof of the resolvent R of C1 and C2
|
||
*/
|
||
expr mk_or_elim_tree1(expr const & l, expr const & not_l, expr C1, expr const & H1, expr const & C2, expr const & H2,
|
||
expr const & R, extension_context & ctx) const {
|
||
check_system("resolve macro");
|
||
expr lhs, rhs;
|
||
if (is_or(C1, lhs, rhs)) {
|
||
return mk_or_elim_tree1(l, not_l, lhs, rhs, H1, C2, H2, R, ctx);
|
||
} else {
|
||
C1 = ctx.whnf(C1);
|
||
if (is_or(C1, lhs, rhs)) {
|
||
return mk_or_elim_tree1(l, not_l, lhs, rhs, H1, C2, H2, R, ctx);
|
||
} else if (is_def_eq(C1, l, ctx)) {
|
||
return mk_or_elim_tree2(C1, H1, not_l, C2, H2, R, ctx);
|
||
} else {
|
||
return mk_or_intro(C1, H1, R, ctx);
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
\brief Given
|
||
(or lhs1 rhs1) : H1, where lhs1 or rhs1 contain l
|
||
C2 : H2, where C2 contains not_l
|
||
Return a proof of the resolvent R of C1 and C2
|
||
*/
|
||
expr mk_or_elim_tree1(expr const & l, expr const & not_l, expr const & lhs1, expr const & rhs1, expr const & H1,
|
||
expr const & C2, expr const & H2, expr const & R, extension_context & ctx) const {
|
||
expr l_1 = lift(l);
|
||
expr not_l_1 = lift(not_l);
|
||
expr lhs1_1 = lift(lhs1);
|
||
expr rhs1_1 = lift(rhs1);
|
||
expr C2_1 = lift(C2);
|
||
expr H2_1 = lift(H2);
|
||
expr R_1 = lift(R);
|
||
// or_elim {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
||
return g_or_elim(lhs1, rhs1, R, H1,
|
||
mk_lambda("H2", lhs1, mk_or_elim_tree1(l_1, not_l_1, lhs1_1, g_var_0, C2_1, H2_1, R_1, ctx)),
|
||
mk_lambda("H3", rhs1, mk_or_elim_tree1(l_1, not_l_1, rhs1_1, g_var_0, C2_1, H2_1, R_1, ctx)));
|
||
}
|
||
|
||
/**
|
||
Given
|
||
l : H
|
||
C2 : H2, where C2 contains not_l
|
||
produce a proof for R
|
||
*/
|
||
expr mk_or_elim_tree2(expr const & l, expr const & H, expr const & not_l, expr C2, expr const & H2,
|
||
expr const & R, extension_context & ctx) const {
|
||
check_system("resolve macro");
|
||
expr lhs, rhs;
|
||
if (is_or(C2, lhs, rhs)) {
|
||
return mk_or_elim_tree2(l, H, not_l, lhs, rhs, H2, R, ctx);
|
||
} else {
|
||
C2 = ctx.whnf(C2);
|
||
if (is_or(C2, lhs, rhs)) {
|
||
return mk_or_elim_tree2(l, H, not_l, lhs, rhs, H2, R, ctx);
|
||
} else if (is_def_eq(C2, not_l, ctx)) {
|
||
// absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬ a) : b
|
||
return g_absurd_elim(l, R, H, H2);
|
||
} else {
|
||
return mk_or_intro(C2, H2, R, ctx);
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
Given
|
||
l : H
|
||
(or lhs2 rhs2) : H2, where lhs2 or rhs2 contain not_l
|
||
produce a proof for R
|
||
*/
|
||
expr mk_or_elim_tree2(expr const & l, expr const & H, expr const & not_l,
|
||
expr const & lhs2, expr const & rhs2, expr const & H2,
|
||
expr const & R, extension_context & ctx) const {
|
||
expr l_1 = lift(l);
|
||
expr H_1 = lift(H);
|
||
expr not_l_1 = lift(not_l);
|
||
expr lhs2_1 = lift(lhs2);
|
||
expr rhs2_1 = lift(rhs2);
|
||
expr R_1 = lift(R);
|
||
// or_elim {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
||
return g_or_elim(lhs2, rhs2, R, H2,
|
||
mk_lambda("H2", lhs2, mk_or_elim_tree2(l_1, H_1, not_l_1, lhs2_1, g_var_0, R_1, ctx)),
|
||
mk_lambda("H3", rhs2, mk_or_elim_tree2(l_1, H_1, not_l_1, rhs2_1, g_var_0, R_1, ctx)));
|
||
}
|
||
|
||
virtual name get_name() const { return g_resolve_macro_name; }
|
||
/** \brief Resolve is a very simple macro, we can trust its implementation most of the time. */
|
||
virtual unsigned trust_level() const { return 0; }
|
||
virtual void write(serializer & s) const { s.write_string(g_resolve_opcode); }
|
||
};
|
||
|
||
static macro_definition g_resolve_macro_definition(new resolve_macro_definition_cell());
|
||
|
||
expr mk_resolve_macro(expr const & l, expr const & H1, expr const & H2) {
|
||
expr args[3] = {l, H1, H2};
|
||
return mk_macro(g_resolve_macro_definition, 3, args);
|
||
}
|
||
|
||
static register_macro_deserializer_fn
|
||
resolve_macro_des_fn(g_resolve_opcode,
|
||
[](deserializer &, unsigned num, expr const * args) {
|
||
if (num != 3)
|
||
throw corrupted_stream_exception();
|
||
return mk_resolve_macro(args[0], args[1], args[2]);
|
||
});
|
||
|
||
static int mk_resolve_macro(lua_State * L) { return push_expr(L, mk_resolve_macro(to_expr(L, 1), to_expr(L, 2), to_expr(L, 3))); }
|
||
void open_resolve_macro(lua_State * L) { SET_GLOBAL_FUN(mk_resolve_macro, "resolve_macro"); }
|
||
}
|