84 lines
2.9 KiB
Text
84 lines
2.9 KiB
Text
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Jakob von Raumer
|
|
-- Ported from Coq HoTT
|
|
import hott.equiv hott.axioms.funext
|
|
open path function
|
|
|
|
namespace IsEquiv
|
|
context
|
|
parameters {A B : Type} (f : A → B)
|
|
|
|
--Precomposition of arbitrary functions with f
|
|
definition precomp (C : Type) (h : B → C) : A → C := h ∘ f
|
|
|
|
--Postcomposition of arbitrary functions with f
|
|
definition postcomp (C : Type) (l : C → A) : C → B := f ∘ l
|
|
|
|
--Precomposing with an equivalence is an equivalence
|
|
definition precompose [instance] [Hf : IsEquiv f] (C : Type):
|
|
IsEquiv (precomp C) :=
|
|
adjointify (precomp C) (λh, h ∘ f⁻¹)
|
|
(λh, path_forall _ _ (λx, ap h (sect f x)))
|
|
(λg, path_forall _ _ (λy, ap g (retr f y)))
|
|
|
|
--Postcomposing with an equivalence is an equivalence
|
|
definition postcompose [instance] [Hf : IsEquiv f] (C : Type):
|
|
IsEquiv (postcomp C) :=
|
|
adjointify (postcomp C) (λl, f⁻¹ ∘ l)
|
|
(λh, path_forall _ _ (λx, retr f (h x)))
|
|
(λg, path_forall _ _ (λy, sect f (g y)))
|
|
|
|
--Conversely, if pre- or post-composing with a function is always an equivalence,
|
|
--then that function is also an equivalence. It's convenient to know
|
|
--that we only need to assume the equivalence when the other type is
|
|
--the domain or the codomain.
|
|
private definition isequiv_precompose_eq (C D : Type) (Ceq : IsEquiv (precomp C))
|
|
(Deq : IsEquiv (precomp D)) (k : C → D) (h : A → C) :
|
|
k ∘ (inv (precomp C)) h ≈ (inv (precomp D)) (k ∘ h) :=
|
|
let invD := inv (precomp D) in
|
|
let invC := inv (precomp C) in
|
|
have eq1 : invD (k ∘ h) ≈ k ∘ (invC h),
|
|
from calc invD (k ∘ h) ≈ invD (k ∘ (precomp C (invC h))) : retr (precomp C) h
|
|
... ≈ k ∘ (invC h) : !sect,
|
|
eq1⁻¹
|
|
|
|
definition isequiv_precompose (Aeq : IsEquiv (precomp A))
|
|
(Beq : IsEquiv (precomp B)) : (IsEquiv f) :=
|
|
let invA := inv (precomp A) in
|
|
let invB := inv (precomp B) in
|
|
let sect' : Sect (invA id) f := (λx,
|
|
calc f (invA id x) ≈ (f ∘ invA id) x : idp
|
|
... ≈ invB (f ∘ id) x : apD10 (!isequiv_precompose_eq)
|
|
... ≈ invB (precomp B id) x : idp
|
|
... ≈ x : apD10 (sect (precomp B) id))
|
|
in
|
|
let retr' : Sect f (invA id) := (λx,
|
|
calc invA id (f x) ≈ precomp A (invA id) x : idp
|
|
... ≈ x : apD10 (retr (precomp A) id)) in
|
|
adjointify f (invA id) sect' retr'
|
|
|
|
end
|
|
|
|
end IsEquiv
|
|
|
|
--Bundled versions of the previous theorems
|
|
namespace Equiv
|
|
|
|
context
|
|
parameters {A B C : Type} {eqf : A ≃ B}
|
|
|
|
private definition f := equiv_fun eqf
|
|
private definition Hf := equiv_isequiv eqf
|
|
|
|
definition precompose : (B → C) ≃ (A → C) :=
|
|
Equiv_mk (IsEquiv.precomp f C)
|
|
(@IsEquiv.precompose A B f Hf C)
|
|
|
|
definition postcompose : (C → A) ≃ (C → B) :=
|
|
Equiv_mk (IsEquiv.postcomp f C)
|
|
(@IsEquiv.postcompose A B f Hf C)
|
|
|
|
end
|
|
|
|
end Equiv
|