lean2/library/logic/instances.lean

136 lines
4.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad
-- logic.instances
-- ====================
import logic.connectives algebra.relation
namespace relation
open relation
-- Congruences for logic
-- ---------------------
theorem congruence_not : congruence iff iff not :=
congruence.mk
(take a b,
assume H : a ↔ b, iff.intro
(assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2)))
theorem congruence_and : congruence2 iff iff iff and :=
congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ∧ a2, and.imp_and H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 ∧ b2, and.imp_and H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem congruence_or : congruence2 iff iff iff or :=
congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 a2, or.imp_or H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 b2, or.imp_or H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem congruence_imp : congruence2 iff iff iff imp :=
congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1))))
theorem congruence_iff : congruence2 iff iff iff iff :=
congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2))
(assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2))))
-- theorem congruence_const_iff [instance] := congruence.const iff iff.refl
definition congruence_not_compose [instance] := congruence.compose congruence_not
definition congruence_and_compose [instance] := congruence.compose21 congruence_and
definition congruence_or_compose [instance] := congruence.compose21 congruence_or
definition congruence_implies_compose [instance] := congruence.compose21 congruence_imp
definition congruence_iff_compose [instance] := congruence.compose21 congruence_iff
-- Generalized substitution
-- ------------------------
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
-- information to infer an mp-like relation.
namespace general_operations
theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ [C : congruence R iff P]
{a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (congruence.app C H) H1
end general_operations
-- = is an equivalence relation
-- ----------------------------
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) :=
relation.is_reflexive.mk (@eq.refl T)
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) :=
relation.is_symmetric.mk (@eq.symm T)
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) :=
relation.is_transitive.mk (@eq.trans T)
-- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class
theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) :=
relation.is_equivalence.mk _ _ _
-- iff is an equivalence relation
-- ------------------------------
theorem is_reflexive_iff [instance] : relation.is_reflexive iff :=
relation.is_reflexive.mk (@iff.refl)
theorem is_symmetric_iff [instance] : relation.is_symmetric iff :=
relation.is_symmetric.mk (@iff.symm)
theorem is_transitive_iff [instance] : relation.is_transitive iff :=
relation.is_transitive.mk (@iff.trans)
-- Mp-like for iff
-- ---------------
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : @relation.mp_like iff a b H :=
relation.mp_like.mk (iff.elim_left H)
-- Substition for iff
-- ------------------
namespace iff
theorem subst {P : Prop → Prop} [C : congruence iff iff P] {a b : Prop} (H : a ↔ b) (H1 : P a) :
P b :=
@general_operations.subst Prop iff P C a b H H1
end iff
-- Support for calculations with iff
-- ----------------
calc_subst iff.subst
namespace iff_ops
notation H ⁻¹ := iff.symm H
notation H1 ⬝ H2 := iff.trans H1 H2
notation H1 ▸ H2 := iff.subst H1 H2
definition refl := iff.refl
definition symm := @iff.symm
definition trans := @iff.trans
definition subst := @iff.subst
definition mp := @iff.mp
end iff_ops
end relation