70 lines
2.2 KiB
Text
70 lines
2.2 KiB
Text
import logic data.prod
|
||
open eq.ops prod
|
||
|
||
inductive tree (A : Type) :=
|
||
leaf : A → tree A,
|
||
node : tree A → tree A → tree A
|
||
|
||
inductive one.{l} : Type.{max 1 l} :=
|
||
star : one
|
||
|
||
set_option pp.universes true
|
||
|
||
namespace tree
|
||
section
|
||
variables {A : Type} {C : tree A → Type}
|
||
definition cases_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂, C (node t₁ t₂)) : C t :=
|
||
rec e₁ (λt₁ t₂ r₁ r₂, e₂ t₁ t₂) t
|
||
end
|
||
|
||
section
|
||
universe variables l₁ l₂
|
||
variable {A : Type.{l₁}}
|
||
variable (C : tree A → Type.{l₂})
|
||
definition below (t : tree A) : Type :=
|
||
rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
|
||
end
|
||
|
||
section
|
||
universe variables l₁ l₂
|
||
variable {A : Type.{l₁}}
|
||
variable {C : tree A → Type.{l₂}}
|
||
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
|
||
:= have general : C t × below C t, from
|
||
rec_on t
|
||
(λa, (H (leaf a) one.star, one.star))
|
||
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
|
||
have b : below C (node l r), from
|
||
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
|
||
have c : C (node l r), from
|
||
H (node l r) b,
|
||
(c, b)),
|
||
pr₁ general
|
||
end
|
||
|
||
definition no_confusion_type {A : Type} (P : Type) (t₁ t₂ : tree A) : Type :=
|
||
cases_on t₁
|
||
(λ a₁, cases_on t₂
|
||
(λ a₂, (a₁ = a₂ → P) → P)
|
||
(λ l₂ r₂, P))
|
||
(λ l₁ r₁, cases_on t₂
|
||
(λ a₂, P)
|
||
(λ l₂ r₂, (l₁ = l₂ → r₁ = r₂ → P) → P))
|
||
|
||
set_option pp.universes true
|
||
check no_confusion_type
|
||
|
||
definition no_confusion {A : Type} (P : Type) (t₁ t₂ : tree A) : t₁ = t₂ → no_confusion_type P t₁ t₂ :=
|
||
assume e₁ : t₁ = t₂,
|
||
have aux₁ : t₁ = t₁ → no_confusion_type P t₁ t₁, from
|
||
take h, cases_on t₁
|
||
(λ a, assume h : a = a → P, h (eq.refl a))
|
||
(λ l r, assume h : l = l → r = r → P, h (eq.refl l) (eq.refl r)),
|
||
eq.rec aux₁ e₁ e₁
|
||
|
||
check no_confusion
|
||
|
||
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
|
||
assume h : leaf a = node l r,
|
||
no_confusion false (leaf a) (node l r) h
|
||
end tree
|