lean2/library/data/vector.lean

273 lines
9.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.vector
Author: Floris van Doorn, Leonardo de Moura
-/
import data.nat data.list data.fin
open nat prod fin
inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)
namespace vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variables {A B C : Type}
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n)
| 0 := inhabited.mk []
| (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
theorem vector0_eq_nil : ∀ (v : vector A 0), v = []
| [] := rfl
definition head : Π {n : nat}, vector A (succ n) → A
| n (a::v) := a
definition tail : Π {n : nat}, vector A (succ n) → vector A n
| n (a::v) := v
theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h :=
rfl
theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl
theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v
| n (a::v) := rfl
definition last : Π {n : nat}, vector A (succ n) → A
| last [a] := a
| last (a::v) := last v
theorem last_singleton (a : A) : last [a] = a :=
rfl
theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl
definition const : Π (n : nat), A → vector A n
| 0 a := []
| (succ n) a := a :: const n a
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl
theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a
| 0 a := rfl
| (n+1) a := last_const n a
definition nth : Π {n : nat}, vector A n → fin n → A
| ⌞n+1⌟ (h :: t) (fz n) := h
| ⌞n+1⌟ (h :: t) (fs f) := nth t f
definition tabulate : Π {n : nat}, (fin n → A) → vector A n
| 0 f := []
| (n+1) f := f (fz n) :: tabulate (λ i : fin n, f (fs i))
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
| (n+1) f (fz n) := rfl
| (n+1) f (fs i) :=
begin
change (nth (tabulate (λ i : fin n, f (fs i))) i = f (fs i)),
rewrite nth_tabulate
end
definition map (f : A → B) : Π {n : nat}, vector A n → vector B n
| map [] := []
| map (a::v) := f a :: map v
theorem map_nil (f : A → B) : map f [] = [] :=
rfl
theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
| (succ n) (h :: t) (fz n) := rfl
| (succ n) (h :: t) (fs i) :=
begin
change (nth (map f t) i = f (nth t i)),
rewrite nth_map
end
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n
| map2 [] [] := []
| map2 (a::va) (b::vb) := f a b :: map2 va vb
theorem map2_nil (f : A → B → C) : map2 f [] [] = [] :=
rfl
theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
| 0 m [] w := w
| (succ n) m (a::v) w := a :: (append v w)
theorem nil_append {n : nat} (v : vector A n) : append [] v = v :=
rfl
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
append (h::t) v = h :: (append t v) :=
rfl
theorem append_nil : Π {n : nat} (v : vector A n), append v [] == v
| 0 [] := !heq.refl
| (n+1) (h::t) :=
begin
change (h :: append t [] == h :: t),
have H₁ : append t [] == t, from append_nil t,
revert H₁, generalize (append t []),
rewrite [-add_eq_addl, add_zero],
intros (w, H₁),
rewrite [heq.to_eq H₁],
apply heq.refl
end
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
| 0 m [] w := rfl
| (n+1) m (h :: t) w :=
begin
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
rewrite map_append
end
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| unzip [] := ([], [])
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
theorem unzip_nil : unzip (@nil (A × B)) = ([], []) :=
rfl
theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) :
unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) :=
rfl
definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n
| zip [] [] := []
| zip (a::va) (b::vb) := ((a, b) :: zip va vb)
theorem zip_nil_nil : zip (@nil A) (@nil B) = nil :=
rfl
theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) :
zip (a::va) (b::vb) = ((a, b) :: zip va vb) :=
rfl
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂)
| 0 [] [] := rfl
| (n+1) (a::va) (b::vb) := calc
unzip (zip (a :: va) (b :: vb))
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
... = (a :: va, b :: vb) : rfl
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
| 0 [] := rfl
| (n+1) ((a, b) :: v) := calc
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
... = (a, b) :: v : by rewrite zip_unzip
/- Concat -/
definition concat : Π {n : nat}, vector A n → A → vector A (succ n)
| concat [] a := [a]
| concat (b::v) a := b :: concat v a
theorem concat_nil (a : A) : concat [] a = [a] :=
rfl
theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a :=
rfl
theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a
| 0 [] a := rfl
| (n+1) (b::v) a := calc
last (concat (b::v) a) = last (concat v a) : rfl
... = a : last_concat v a
/- Reverse -/
definition reverse : Π {n : nat}, vector A n → vector A n
| 0 [] := []
| (n+1) (x :: xs) := concat (reverse xs) x
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
| 0 [] a := rfl
| (n+1) (x :: xs) a :=
begin
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
rewrite reverse_concat
end
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
| 0 [] := rfl
| (n+1) (x :: xs) :=
begin
change (reverse (concat (reverse xs) x) = x :: xs),
rewrite [reverse_concat, reverse_reverse]
end
/- list <-> vector -/
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
| list.nil := []
| (list.cons a l) := a :: (of_list l)
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
| 0 [] := list.nil
| (n+1) (a :: vs) := list.cons a (to_list vs)
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
| list.nil := rfl
| (list.cons a l) :=
begin
change (list.cons a (to_list (of_list l)) = list.cons a l),
rewrite to_list_of_list
end
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
| 0 [] := rfl
| (n+1) (a :: vs) :=
begin
change (succ (list.length (to_list vs)) = succ n),
rewrite length_to_list
end
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
| 0 [] := !heq.refl
| (n+1) (a :: vs) :=
begin
change (a :: of_list (to_list vs) == a :: vs),
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
revert H₁,
generalize (of_list (to_list vs)),
rewrite length_to_list at *,
intro vs', intro H,
have H₂ : vs' = vs, from heq.to_eq H,
rewrite H₂,
apply heq.refl
end
/- decidable equality -/
open decidable
definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂)
| ⌞0⌟ [] [] := inl rfl
| ⌞n+1⌟ (a::v₁) (b::v₂) :=
match H a b with
| inl Hab :=
match decidable_eq v₁ v₂ with
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
| inr Hn := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd (heq.to_eq e₃) Hn))
end
| inr Hnab := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd e₂ Hnab))
end
end vector