lean2/library/standard/logic.lean
Leonardo de Moura 13804f75f9 feat(library/standard/logic): iff is refl, trans, and symm
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-07-20 21:10:30 -07:00

307 lines
9.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
definition Bool [inline] := Type.{0}
inductive false : Bool :=
-- No constructors
theorem false_elim (c : Bool) (H : false) : c
:= false_rec c H
inductive true : Bool :=
| trivial : true
definition not (a : Bool) := a → false
prefix `¬`:40 := not
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
theorem not_intro {a : Bool} (H : a → false) : ¬a
:= H
theorem not_elim {a : Bool} (H1 : ¬a) (H2 : a) : false
:= H1 H2
theorem absurd {a : Bool} (H1 : a) (H2 : ¬a) : false
:= H2 H1
theorem not_not_intro {a : Bool} (Ha : a) : ¬¬a
:= assume Hna : ¬a, absurd Ha Hna
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬b) : ¬a
:= assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= assume Hnb : ¬b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬a) : b
:= false_elim b (absurd H1 H2)
theorem absurd_not_true (H : ¬true) : false
:= absurd trivial H
theorem not_false_trivial : ¬false
:= assume H : false, H
theorem not_implies_left {a b : Bool} (H : ¬(a → b)) : ¬¬a
:= assume Hna : ¬a, absurd (assume Ha : a, absurd_elim b Ha Hna) H
theorem not_implies_right {a b : Bool} (H : ¬(a → b)) : ¬b
:= assume Hb : b, absurd (assume Ha : a, Hb) H
inductive and (a b : Bool) : Bool :=
| and_intro : a → b → and a b
infixr `/\`:35 := and
infixr `∧`:35 := and
theorem and_elim {a b c : Bool} (H1 : a → b → c) (H2 : a ∧ b) : c
:= and_rec H1 H2
theorem and_elim_left {a b : Bool} (H : a ∧ b) : a
:= and_rec (λa b, a) H
theorem and_elim_right {a b : Bool} (H : a ∧ b) : b
:= and_rec (λa b, b) H
theorem and_swap {a b : Bool} (H : a ∧ b) : b ∧ a
:= and_intro (and_elim_right H) (and_elim_left H)
theorem and_not_left {a : Bool} (b : Bool) (Hna : ¬a) : ¬(a ∧ b)
:= assume H : a ∧ b, absurd (and_elim_left H) Hna
theorem and_not_right (a : Bool) {b : Bool} (Hnb : ¬b) : ¬(a ∧ b)
:= assume H : a ∧ b, absurd (and_elim_right H) Hnb
inductive or (a b : Bool) : Bool :=
| or_intro_left : a → or a b
| or_intro_right : b → or a b
infixr `\/`:30 := or
infixr ``:30 := or
theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= or_rec H2 H3 H1
theorem resolve_right {a b : Bool} (H1 : a b) (H2 : ¬a) : b
:= or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
theorem resolve_left {a b : Bool} (H1 : a b) (H2 : ¬b) : a
:= or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
theorem or_swap {a b : Bool} (H : a b) : b a
:= or_elim H (assume Ha, or_intro_right b Ha) (assume Hb, or_intro_left a Hb)
theorem or_not_intro {a b : Bool} (Hna : ¬a) (Hnb : ¬b) : ¬(a b)
:= assume H : a b, or_elim H
(assume Ha, absurd_elim _ Ha Hna)
(assume Hb, absurd_elim _ Hb Hnb)
inductive eq {A : Type} (a : A) : A → Bool :=
| refl : eq a a
infix `=`:50 := eq
theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b
:= eq_rec H2 H1
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H2 H1
calc_subst subst
calc_refl refl
calc_trans trans
theorem true_ne_false : ¬true = false
:= assume H : true = false,
subst H trivial
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
:= subst H (refl a)
theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a
:= subst H (refl (f a))
theorem congr2 {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= subst H (refl (f a))
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
:= subst H1 (subst H2 (refl (f a)))
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x
:= take x, congr1 H x
theorem not_congr {a b : Bool} (H : a = b) : (¬a) = (¬b)
:= congr2 not H
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
:= subst H1 H2
infixl `<|`:100 := eqmp
infixl `◂`:100 := eqmp
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
:= (symm H1) ◂ H2
theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Bool} (H : a = false) : ¬a
:= not_intro (assume Ha : a, H ◂ Ha)
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
:= assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha)
definition ne {A : Type} (a b : A) := ¬(a = b)
infix `≠`:50 := ne
theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b
:= H
theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false
:= H1 H2
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false
:= H (refl a)
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
:= H (refl a)
theorem not_eq_symm {A : Type} {a b : A} (H : ¬ a = b) : ¬ b = a
:= assume H1 : b = a, H (symm H1)
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a
:= not_eq_symm H
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst (symm H1) H2
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H2 H1
calc_trans eq_ne_trans
calc_trans ne_eq_trans
definition iff (a b : Bool) := (a → b) ∧ (b → a)
infix `↔`:25 := iff
theorem iff_intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a ↔ b
:= and_intro H1 H2
theorem iff_elim {a b c : Bool} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c
:= and_rec H1 H2
theorem iff_elim_left {a b : Bool} (H : a ↔ b) : a → b
:= iff_elim (assume H1 H2, H1) H
theorem iff_elim_right {a b : Bool} (H : a ↔ b) : b → a
:= iff_elim (assume H1 H2, H2) H
theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b
:= (iff_elim_left H1) H2
theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a
:= (iff_elim_right H1) H2
theorem iff_flip_sign {a b : Bool} (H1 : a ↔ b) : ¬a ↔ ¬b
:= iff_intro
(assume Hna, mt (iff_elim_right H1) Hna)
(assume Hnb, mt (iff_elim_left H1) Hnb)
theorem iff_refl (a : Bool) : a ↔ a
:= iff_intro (assume H, H) (assume H, H)
theorem iff_trans {a b c : Bool} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c
:= iff_intro
(assume Ha, iff_mp_left H2 (iff_mp_left H1 Ha))
(assume Hc, iff_mp_right H1 (iff_mp_right H2 Hc))
theorem iff_symm {a b : Bool} (H : a ↔ b) : b ↔ a
:= iff_intro
(assume Hb, iff_mp_right H Hb)
(assume Ha, iff_mp_left H Ha)
calc_trans iff_trans
theorem eq_to_iff {a b : Bool} (H : a = b) : a ↔ b
:= iff_intro (λ Ha, subst H Ha) (λ Hb, subst (symm H) Hb)
theorem and_comm (a b : Bool) : a ∧ b ↔ b ∧ a
:= iff_intro (λH, and_swap H) (λH, and_swap H)
theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)
:= iff_intro
(assume H, and_intro
(and_elim_left (and_elim_left H))
(and_intro (and_elim_right (and_elim_left H)) (and_elim_right H)))
(assume H, and_intro
(and_intro (and_elim_left H) (and_elim_left (and_elim_right H)))
(and_elim_right (and_elim_right H)))
theorem or_comm (a b : Bool) : a b ↔ b a
:= iff_intro (λH, or_swap H) (λH, or_swap H)
theorem or_assoc (a b c : Bool) : (a b) c ↔ a (b c)
:= iff_intro
(assume H, or_elim H
(assume H1, or_elim H1
(assume Ha, or_intro_left _ Ha)
(assume Hb, or_intro_right a (or_intro_left c Hb)))
(assume Hc, or_intro_right a (or_intro_right b Hc)))
(assume H, or_elim H
(assume Ha, (or_intro_left c (or_intro_left b Ha)))
(assume H1, or_elim H1
(assume Hb, or_intro_left c (or_intro_right a Hb))
(assume Hc, or_intro_right _ Hc)))
inductive Exists {A : Type} (P : A → Bool) : Bool :=
| exists_intro : ∀ (a : A), P a → Exists P
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists_elim {A : Type} {p : A → Bool} {B : Bool} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B
:= Exists_rec H2 H1
theorem exists_not_forall {A : Type} {p : A → Bool} (H : ∃x, p x) : ¬∀x, ¬p x
:= assume H1 : ∀x, ¬p x,
obtain (w : A) (Hw : p w), from H,
absurd Hw (H1 w)
theorem forall_not_exists {A : Type} {p : A → Bool} (H2 : ∀x, p x) : ¬∃x, ¬p x
:= assume H1 : ∃x, ¬p x,
obtain (w : A) (Hw : ¬p w), from H1,
absurd (H2 w) Hw
definition exists_unique {A : Type} (p : A → Bool) := ∃x, p x ∧ ∀y, y ≠ x → ¬ p y
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
theorem exists_unique_intro {A : Type} {p : A → Bool} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬ p y) : ∃!x, p x
:= exists_intro w (and_intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Bool} {b : Bool} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬ p y) → b) : b
:= obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw)
inductive inhabited (A : Type) : Bool :=
| inhabited_intro : A → inhabited A
theorem inhabited_elim {A : Type} {B : Bool} (H1 : inhabited A) (H2 : A → B) : B
:= inhabited_rec H2 H1
theorem inhabited_Bool [instance] : inhabited Bool
:= inhabited_intro true
theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
:= inhabited_elim H (take b, inhabited_intro (λa, b))
theorem inhabited_exists {A : Type} {p : A → Bool} (H : ∃x, p x) : inhabited A
:= obtain w Hw, from H, inhabited_intro w