205 lines
6.8 KiB
Text
205 lines
6.8 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura
|
||
|
||
Parity
|
||
-/
|
||
import data.nat.div logic.identities
|
||
|
||
namespace nat
|
||
open decidable
|
||
|
||
definition even (n : nat) := n mod 2 = 0
|
||
|
||
definition decidable_even [instance] : ∀ n, decidable (even n) :=
|
||
λ n, !nat.has_decidable_eq
|
||
|
||
definition odd (n : nat) := ¬even n
|
||
|
||
definition decidable_odd [instance] : ∀ n, decidable (odd n) :=
|
||
λ n, decidable_not
|
||
|
||
lemma even_of_dvd {n} : 2 ∣ n → even n :=
|
||
mod_eq_zero_of_dvd
|
||
|
||
lemma dvd_of_even {n} : even n → 2 ∣ n :=
|
||
dvd_of_mod_eq_zero
|
||
|
||
lemma not_odd_zero : ¬ odd 0 :=
|
||
dec_trivial
|
||
|
||
lemma even_zero : even 0 :=
|
||
dec_trivial
|
||
|
||
lemma odd_one : odd 1 :=
|
||
dec_trivial
|
||
|
||
lemma not_even_one : ¬ even 1 :=
|
||
dec_trivial
|
||
|
||
lemma odd_eq_not_even : ∀ n, odd n = ¬ even n :=
|
||
λ n, rfl
|
||
|
||
lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n :=
|
||
λ n, !iff.refl
|
||
|
||
lemma odd_of_not_even {n} : ¬ even n → odd n :=
|
||
λ h, iff.mpr !odd_iff_not_even h
|
||
|
||
lemma even_of_not_odd {n} : ¬ odd n → even n :=
|
||
λ h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h)
|
||
|
||
lemma not_odd_of_even {n} : even n → ¬ odd n :=
|
||
λ h, iff.mpr (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h)
|
||
|
||
lemma not_even_of_odd {n} : odd n → ¬ even n :=
|
||
λ h, iff.mp !odd_iff_not_even h
|
||
|
||
lemma odd_succ_of_even {n} : even n → odd (succ n) :=
|
||
λ h, by_contradiction (λ hn : ¬ odd (succ n),
|
||
assert 0 = 1, from calc
|
||
0 = (n+1) mod 2 : even_of_not_odd hn
|
||
... = 1 mod 2 : add_mod_eq_add_mod_right 1 h,
|
||
by contradiction)
|
||
|
||
lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1
|
||
| 0 h₁ h₂ := absurd rfl h₁
|
||
| 1 h₁ h₂ := rfl
|
||
| (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero
|
||
|
||
lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 :=
|
||
λ h,
|
||
have h₁ : ¬ n mod 2 = 0, from h,
|
||
have h₂ : n mod 2 < 2, from mod_lt n dec_trivial,
|
||
eq_1_of_ne_0_lt_2 h₁ h₂
|
||
|
||
lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n :=
|
||
λ h, by_contradiction (λ hn,
|
||
assert h₁ : n mod 2 = 0, from even_of_not_odd hn,
|
||
by rewrite h at h₁; contradiction)
|
||
|
||
lemma even_succ_of_odd {n} : odd n → even (succ n) :=
|
||
λ h,
|
||
have h₁ : n mod 2 = 1, from mod_eq_of_odd h,
|
||
have h₂ : n mod 2 = 1 mod 2, from mod_eq_of_odd h,
|
||
have h₃ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₂,
|
||
h₃
|
||
|
||
lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) :=
|
||
λ h, odd_succ_of_even (even_succ_of_odd h)
|
||
|
||
lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) :=
|
||
λ h, even_succ_of_odd (odd_succ_of_even h)
|
||
|
||
lemma even_of_odd_succ {n} : odd (succ n) → even n :=
|
||
λ h, by_contradiction (λ he,
|
||
have h₁ : odd n, from odd_of_not_even he,
|
||
have h₂ : even (succ n), from even_succ_of_odd h₁,
|
||
absurd h₂ (not_even_of_odd h))
|
||
|
||
lemma odd_of_even_succ {n} : even (succ n) → odd n :=
|
||
λ h, by_contradiction (λ he,
|
||
have h₁ : even n, from even_of_not_odd he,
|
||
have h₂ : odd (succ n), from odd_succ_of_even h₁,
|
||
absurd h (not_even_of_odd h₂))
|
||
|
||
lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n :=
|
||
λ h, even_of_odd_succ (odd_of_even_succ h)
|
||
|
||
lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n :=
|
||
λ h, odd_of_even_succ (even_of_odd_succ h)
|
||
|
||
lemma dvd_of_odd {n} : odd n → 2 ∣ n+1 :=
|
||
λ h, dvd_of_even (even_succ_of_odd h)
|
||
|
||
lemma odd_of_dvd {n} : 2 ∣ n+1 → odd n :=
|
||
λ h, odd_of_even_succ (even_of_dvd h)
|
||
|
||
lemma even_two_mul : ∀ n, even (2 * n) :=
|
||
λ n, even_of_dvd (dvd_mul_right 2 n)
|
||
|
||
lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) :=
|
||
λ n, odd_succ_of_even (even_two_mul n)
|
||
|
||
lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) :=
|
||
λ n, not_even_of_odd (odd_two_mul_plus_one n)
|
||
|
||
lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) :=
|
||
λ n, not_odd_of_even (even_two_mul n)
|
||
|
||
lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n)
|
||
| 0 h := absurd h not_odd_zero
|
||
| (n+1) h := even_of_odd_succ h
|
||
|
||
lemma even_or_odd : ∀ n, even n ∨ odd n :=
|
||
λ n, by_cases
|
||
(λ h : even n, or.inl h)
|
||
(λ h : ¬ even n, or.inr (odd_of_not_even h))
|
||
|
||
lemma exists_of_even {n} : even n → ∃ k, n = 2*k :=
|
||
λ h, exists_eq_mul_right_of_dvd (dvd_of_even h)
|
||
|
||
lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1
|
||
| 0 h := absurd h not_odd_zero
|
||
| (n+1) h :=
|
||
obtain k (hk : n = 2*k), from exists_of_even (even_of_odd_succ h),
|
||
exists.intro k (by subst n)
|
||
|
||
lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n :=
|
||
λ h, obtain k (hk : n = 2 * k), from h,
|
||
have h₁ : 2 ∣ n, by subst n; apply dvd_mul_right,
|
||
even_of_dvd h₁
|
||
|
||
lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n :=
|
||
λ h, by_contradiction (λ hn,
|
||
have h₁ : even n, from even_of_not_odd hn,
|
||
have h₂ : ∃ k, n = 2 * k, from exists_of_even h₁,
|
||
obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h,
|
||
obtain k₂ (hk₂ : n = 2 * k₂), from h₂,
|
||
assert h₃ : (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂],
|
||
begin
|
||
rewrite [mul_mod_right at h₃, add.comm at h₃, add_mul_mod_self_left at h₃],
|
||
contradiction
|
||
end)
|
||
|
||
lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) :=
|
||
λ h₁ h₂,
|
||
obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even h₁,
|
||
obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even h₂,
|
||
even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib]))
|
||
|
||
lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) :=
|
||
λ h₁ h₂,
|
||
assert h₃ : even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd h₁) (even_succ_of_odd h₂),
|
||
have h₄ : even(succ (succ (n + m))), by rewrite [add_succ at h₃, succ_add at h₃]; exact h₃,
|
||
even_of_even_succ_succ h₄
|
||
|
||
lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) :=
|
||
λ h₁ h₂,
|
||
assert h₃ : even (n + succ m), from even_add_of_even_of_even h₁ (even_succ_of_odd h₂),
|
||
odd_of_even_succ h₃
|
||
|
||
lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) :=
|
||
λ h₁ h₂,
|
||
assert h₃ : odd (m+n), from odd_add_of_even_of_odd h₂ h₁,
|
||
by rewrite add.comm at h₃; exact h₃
|
||
|
||
lemma even_mul_of_even_left {n} (m) : even n → even (n*m) :=
|
||
λ h,
|
||
obtain k (hk : n = 2*k), from exists_of_even h,
|
||
even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc]))
|
||
|
||
lemma even_mul_of_even_right {n} (m) : even n → even (m*n) :=
|
||
λ h₁,
|
||
assert h₂ : even (n*m), from even_mul_of_even_left _ h₁,
|
||
by rewrite mul.comm at h₂; exact h₂
|
||
|
||
lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) :=
|
||
λ h₁ h₂,
|
||
assert h₃ : even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd h₂),
|
||
assert h₄ : even (n * m + n), by rewrite mul_succ at h₃; exact h₃,
|
||
by_contradiction (λ hn,
|
||
assert h₅ : even (n*m), from even_of_not_odd hn,
|
||
absurd h₄ (not_even_of_odd (odd_add_of_even_of_odd h₅ h₁)))
|
||
end nat
|