99a163f11d
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
81 lines
2 KiB
Text
81 lines
2 KiB
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Assumed: f
|
||
Error (line: 4, pos: 6) type mismatch at application
|
||
f 10 ⊤
|
||
Function type:
|
||
Π (A : Type), A → A → A
|
||
Arguments types:
|
||
ℕ : Type
|
||
10 : ℕ
|
||
⊤ : Bool
|
||
Assumed: g
|
||
Error (line: 7, pos: 6) unsolved placeholder at term
|
||
g 10
|
||
Assumed: h
|
||
Error (line: 11, pos: 27) application type mismatch during term elaboration
|
||
h A x
|
||
Function type:
|
||
Π (A : Type), A → A
|
||
Arguments types:
|
||
A : Type
|
||
x : ?M0[lift:0:2]
|
||
Elaborator state
|
||
#0 ≈ ?M0[lift:0:2]
|
||
Assumed: eq
|
||
Error (line: 15, pos: 51) application type mismatch during term elaboration
|
||
eq C a b
|
||
Function type:
|
||
Π (A : Type), A → A → Bool
|
||
Arguments types:
|
||
C : Type
|
||
a : ?M0[lift:0:3]
|
||
b : ?M2[lift:0:2]
|
||
Elaborator state
|
||
#0 ≈ ?M2[lift:0:2]
|
||
#0 ≈ ?M0[lift:0:3]
|
||
Assumed: a
|
||
Assumed: b
|
||
Assumed: H
|
||
Error (line: 20, pos: 18) type mismatch during term elaboration
|
||
Discharge (λ H1 : _, Conj H1 (Conjunct1 H))
|
||
Term after elaboration:
|
||
Discharge (λ H1 : ?M4, Conj H1 (Conjunct1 H))
|
||
Expected type:
|
||
b
|
||
Got:
|
||
?M4 ⇒ ?M2
|
||
Elaborator state
|
||
?M2[lift:0:1] ≈ (?M4[lift:0:1]) ∧ a
|
||
b ≈ if Bool ?M4 ?M2 ⊤
|
||
b ≈ if Bool ?M4 ?M2 ⊤
|
||
Error (line: 22, pos: 22) type mismatch at application
|
||
Trans (Refl a) (Refl b)
|
||
Function type:
|
||
Π (A : Type U) (a b c : A), (a = b) → (b = c) → (a = c)
|
||
Arguments types:
|
||
Bool : Type
|
||
a : Bool
|
||
a : Bool
|
||
b : Bool
|
||
Refl a : a = a
|
||
Refl b : b = b
|
||
Error (line: 24, pos: 6) type mismatch at application
|
||
f Bool Bool
|
||
Function type:
|
||
Π (A : Type), A → A → A
|
||
Arguments types:
|
||
Type : Type 1
|
||
Bool : Type
|
||
Bool : Type
|
||
Error (line: 27, pos: 21) type mismatch at application
|
||
DisjCases (EM a) (λ H_a : a, H) (λ H_na : ¬ a, NotImp1 (MT H H_na))
|
||
Function type:
|
||
Π (a b c : Bool), (a ∨ b) → (a → c) → (b → c) → c
|
||
Arguments types:
|
||
a : Bool
|
||
¬ a : Bool
|
||
a : Bool
|
||
EM a : a ∨ ¬ a
|
||
(λ H_a : a, H) : a → ((a ⇒ b) ⇒ a)
|
||
(λ H_na : ¬ a, NotImp1 (MT H H_na)) : (¬ a) → a
|