lean2/library/data/list/set.lean

783 lines
36 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Set-like operations on lists
-/
import data.list.basic data.list.comb
open nat function decidable helper_tactics eq.ops
namespace list
section erase
variable {A : Type}
variable [H : decidable_eq A]
include H
definition erase (a : A) : list A → list A
| [] := []
| (b::l) :=
match H a b with
| inl e := l
| inr n := b :: erase l
end
lemma erase_nil (a : A) : erase a [] = [] :=
rfl
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
by rewrite decidable_eq_inl_refl
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
assume h : a ≠ b,
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
by rewrite (decidable_eq_inr_neg h)
lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l)
| [] h := rfl
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
| (x::y::xs) h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, erase_cons_head])
(λ anex : a ≠ x,
assert ainyxs : a ∈ y::xs, from or_resolve_right h anex,
by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem ainyxs])
lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l
| [] h := rfl
| (x::xs) h :=
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs]
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
| [] l₂ h := absurd h !not_mem_nil
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
(λ anex : a ≠ x,
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
| [] l₂ h := rfl
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
(λ anex : a ≠ x,
assert nainxs : a ∉ xs, from not_mem_of_not_mem_cons h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
| [] := λ x xine, xine
| (x::xs) := λ y xine,
by_cases
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
(λ anex : a ≠ x,
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
by_cases
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
(λ ynex : y ≠ x,
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
assert yinxs : y ∈ xs, from subxs yine,
or.inr yinxs))
theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l
| [] n i := absurd i !not_mem_nil
| (c::l) n i := by_cases
(λ beqc : b = c,
assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i)
(λ aeqc : a = c, absurd aeqc (beqc ▸ n))
(λ ainl : a ∈ l, ainl),
by rewrite [beqc, erase_cons_head]; exact ainl)
(λ bnec : b ≠ c, by_cases
(λ aeqc : a = c,
assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons,
by rewrite [erase_cons_tail _ bnec]; exact aux)
(λ anec : a ≠ c,
have ainl : a ∈ l, from mem_of_ne_of_mem anec i,
have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl,
assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel,
by rewrite [erase_cons_tail _ bnec]; exact aux)) --
theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l
| [] i := absurd i !not_mem_nil
| (c::l) i := by_cases
(λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i))
(λ bnec : b ≠ c,
have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons)
(λ ainel : a ∈ erase b l,
have ainl : a ∈ l, from mem_of_mem_erase ainel,
mem_cons_of_mem _ ainl))
theorem all_erase_of_all {p : A → Prop} (a : A) : ∀ {l}, all l p → all (erase a l) p
| [] h := by rewrite [erase_nil]; exact h
| (b::l) h :=
assert h₁ : all l p, from all_of_all_cons h,
have h₂ : all (erase a l) p, from all_erase_of_all h₁,
have pb : p b, from of_all_cons h,
assert h₃ : all (b :: erase a l) p, from all_cons_of_all pb h₂,
by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact h₁)
(λ aneb : a ≠ b, by rewrite [erase_cons_tail _ aneb]; exact h₃)
end erase
/- disjoint -/
section disjoint
variable {A : Type}
definition disjoint (l₁ l₂ : list A) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false)
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
λ d a, d a
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
λ d a i₂ i₁, d a i₁ i₂
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
λ d a i₂ i₁, d a i₁ i₂
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
λ d x xinl₁, disjoint_left d (or.inr xinl₁)
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
λ a ab, absurd ab !not_mem_nil
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
disjoint.comm (disjoint_nil_left l)
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
λ nainl₂ d x (xinal₁ : x ∈ a::l₁),
or.elim (eq_or_mem_of_mem_cons xinal₁)
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁)
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
| [] l₂ l d := disjoint_nil_left l
| (x::xs) l₂ l d :=
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
| [] l₂ l d := d
| (x::xs) l₂ l d :=
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
disjoint_of_disjoint_append_left_right d₁
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
end disjoint
/- no duplicates predicate -/
inductive nodup {A : Type} : list A → Prop :=
| ndnil : nodup []
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
section nodup
open nodup
variables {A B : Type}
theorem nodup_nil : @nodup A [] :=
ndnil
theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
λ i n, ndcons i n
theorem nodup_singleton (a : A) : nodup [a] :=
nodup_cons !not_mem_nil nodup_nil
theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
| a xs (ndcons i n) := n
theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
| a xs (ndcons i n) := i
theorem not_nodup_cons_of_mem {a : A} {l : list A} : a ∈ l → ¬ nodup (a :: l) :=
λ ainl d, absurd ainl (not_mem_of_nodup_cons d)
theorem not_nodup_cons_of_not_nodup {a : A} {l : list A} : ¬ nodup l → ¬ nodup (a :: l) :=
λ nd d, absurd (nodup_of_nodup_cons d) nd
theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
| [] l₂ n := nodup_nil
| (x::xs) l₂ n :=
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
nodup_cons nxinxs ndxs
theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
| [] l₂ n := n
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂
| [] l₂ d := disjoint_nil_left l₂
| (x::xs) l₂ d :=
have d₁ : nodup (x::(xs++l₂)), from d,
have d₂ : nodup (xs++l₂), from nodup_of_nodup_cons d₁,
have nxin : x ∉ xs++l₂, from not_mem_of_nodup_cons d₁,
have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right nxin,
have dsj : disjoint xs l₂, from disjoint_of_nodup_append d₂,
λ a (ainxxs : a ∈ x::xs),
or.elim (eq_or_mem_of_mem_cons ainxxs)
(λ aeqx : a = x, aeqx⁻¹ ▸ nxinl₂)
(λ ainxs : a ∈ xs, disjoint_left dsj ainxs)
theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂)
| [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂
| (x::xs) l₂ d₁ d₂ dsj :=
have dsj₁ : disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj,
have ndxs : nodup xs, from nodup_of_nodup_cons d₁,
have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ dsj₁,
have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁,
have nxinl₂ : x ∉ l₂, from disjoint_left dsj !mem_cons,
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_append nxinxs nxinl₂,
nodup_cons nxinxsl₂ ndxsl₂
theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) :=
have d₁ : nodup l₁, from nodup_of_nodup_append_left d,
have d₂ : nodup l₂, from nodup_of_nodup_append_right d,
have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d,
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj)
theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) :=
have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d,
have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁,
have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂,
have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁,
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain,
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain,
nodup_cons (not_mem_append nain₁ nain₂) d₃
theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) :=
have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d,
have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d,
have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁,
have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁,
have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁,
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain,
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain,
have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
| [] n := begin rewrite [map_nil], apply nodup_nil end
| (x::xs) n :=
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
assert nfxinm : f x ∉ map f xs, from
λ ab : f x ∈ map f xs,
obtain (y : A) (yinxs : y ∈ xs) (fyfx : f y = f x), from exists_of_mem_map ab,
assert yeqx : y = x, from inj fyfx,
by subst y; contradiction,
nodup_cons nfxinm ndmfxs
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)
| [] n := nodup_nil
| (b::l) n := by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n))
(λ aneb : a ≠ b,
have nbinl : b ∉ l, from not_mem_of_nodup_cons n,
have ndl : nodup l, from nodup_of_nodup_cons n,
have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl,
have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl,
assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal,
by rewrite [erase_cons_tail _ aneb]; exact aux)
theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l
| [] n := !not_mem_nil
| (b::l) n :=
have ndl : nodup l, from nodup_of_nodup_cons n,
have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl,
assert nbinl : b ∉ l, from not_mem_of_nodup_cons n,
by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl)
(λ aneb : a ≠ b,
assert aux : a ∉ b :: erase a l, from
assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal)
(λ aeqb : a = b, absurd aeqb aneb)
(λ aineal : a ∈ erase a l, absurd aineal naineal),
by rewrite [erase_cons_tail _ aneb]; exact aux)
definition erase_dup [H : decidable_eq A] : list A → list A
| [] := []
| (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs
theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = ([] : list A)
theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l :=
assume ainl, calc
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
... = erase_dup l : if_pos ainl
theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l :=
assume nainl, calc
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
... = a :: erase_dup l : if_neg nainl
theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l
| [] h := absurd h !not_mem_nil
| (b::l) h := by_cases
(λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl))
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl)))
(λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons)
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl))))
theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l
| [] h := by rewrite [erase_dup_nil at h]; exact h
| (b::l) h := by_cases
(λ binl : b ∈ l,
have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h,
or.inr (mem_of_mem_erase_dup h₁))
(λ nbinl : b ∉ l,
have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h,
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqb : a = b, by rewrite aeqb; exact !mem_cons)
(λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel)))
theorem erase_dup_sub [H : decidable_eq A] (l : list A) : erase_dup l ⊆ l :=
λ a i, mem_of_mem_erase_dup i
theorem sub_erase_dup [H : decidable_eq A] (l : list A) : l ⊆ erase_dup l :=
λ a i, mem_erase_dup i
theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l)
| [] := by rewrite erase_dup_nil; exact nodup_nil
| (a::l) := by_cases
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l))
(λ nainl : a ∉ l,
assert r : nodup (erase_dup l), from nodup_erase_dup l,
assert nin : a ∉ erase_dup l, from
assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl,
by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r))
theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l
| [] d := rfl
| (a::l) d :=
assert nainl : a ∉ l, from not_mem_of_nodup_cons d,
assert dl : nodup l, from nodup_of_nodup_cons d,
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
definition decidable_nodup [instance] [h : decidable_eq A] : ∀ (l : list A), decidable (nodup l)
| [] := inl nodup_nil
| (a::l) :=
match decidable_mem a l with
| inl p := inr (not_nodup_cons_of_mem p)
| inr n :=
match decidable_nodup l with
| inl nd := inl (nodup_cons n nd)
| inr d := inr (not_nodup_cons_of_not_nodup d)
end
end
theorem nodup_product : ∀ {l₁ : list A} {l₂ : list B}, nodup l₁ → nodup l₂ → nodup (product l₁ l₂)
| [] l₂ n₁ n₂ := nodup_nil
| (a::l₁) l₂ n₁ n₂ :=
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons n₁,
have n₃ : nodup l₁, from nodup_of_nodup_cons n₁,
have n₄ : nodup (product l₁ l₂), from nodup_product n₃ n₂,
have dgen : ∀ l, nodup l → nodup (map (λ b, (a, b)) l)
| [] h := nodup_nil
| (x::l) h :=
have dl : nodup l, from nodup_of_nodup_cons h,
have dm : nodup (map (λ b, (a, b)) l), from dgen l dl,
have nxin : x ∉ l, from not_mem_of_nodup_cons h,
have npin : (a, x) ∉ map (λ b, (a, b)) l, from
assume pin, absurd (mem_of_mem_map_pair₁ pin) nxin,
nodup_cons npin dm,
have dm : nodup (map (λ b, (a, b)) l₂), from dgen l₂ n₂,
have dsj : disjoint (map (λ b, (a, b)) l₂) (product l₁ l₂), from
λ p, match p with
| (a₁, b₁) :=
λ (i₁ : (a₁, b₁) ∈ map (λ b, (a, b)) l₂) (i₂ : (a₁, b₁) ∈ product l₁ l₂),
have a₁inl₁ : a₁ ∈ l₁, from mem_of_mem_product_left i₂,
have a₁eqa : a₁ = a, from eq_of_mem_map_pair₁ i₁,
absurd (a₁eqa ▸ a₁inl₁) nainl₁
end,
nodup_append_of_nodup_of_nodup_of_disjoint dm n₄ dsj
theorem nodup_filter (p : A → Prop) [h : decidable_pred p] : ∀ {l : list A}, nodup l → nodup (filter p l)
| [] nd := nodup_nil
| (a::l) nd :=
have nainl : a ∉ l, from not_mem_of_nodup_cons nd,
have ndl : nodup l, from nodup_of_nodup_cons nd,
assert ndf : nodup (filter p l), from nodup_filter ndl,
assert nainf : a ∉ filter p l, from
assume ainf, absurd (mem_of_mem_filter ainf) nainl,
by_cases
(λ pa : p a, by rewrite [filter_cons_of_pos _ pa]; exact (nodup_cons nainf ndf))
(λ npa : ¬ p a, by rewrite [filter_cons_of_neg _ npa]; exact ndf)
lemma dmap_nodup_of_dinj {p : A → Prop} [h : decidable_pred p] {f : Π a, p a → B} (Pdi : dinj p f):
∀ {l : list A}, nodup l → nodup (dmap p f l)
| [] := take P, nodup.ndnil
| (a::l) := take Pnodup,
decidable.rec_on (h a)
(λ Pa,
begin
rewrite [dmap_cons_of_pos Pa],
apply nodup_cons,
apply (not_mem_dmap_of_dinj_of_not_mem Pdi Pa),
exact not_mem_of_nodup_cons Pnodup,
exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup)
end)
(λ nPa,
begin
rewrite [dmap_cons_of_neg nPa],
exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup)
end)
end nodup
/- upto -/
definition upto : nat → list nat
| 0 := []
| (n+1) := n :: upto n
theorem upto_nil : upto 0 = nil
theorem upto_succ (n : nat) : upto (succ n) = n :: upto n
theorem length_upto : ∀ n, length (upto n) = n
| 0 := rfl
| (succ n) := by rewrite [upto_succ, length_cons, length_upto]
theorem upto_less : ∀ n, all (upto n) (λ i, i < n)
| 0 := trivial
| (succ n) :=
have alln : all (upto n) (λ i, i < n), from upto_less n,
all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h))
theorem nodup_upto : ∀ n, nodup (upto n)
| 0 := nodup_nil
| (n+1) :=
have d : nodup (upto n), from nodup_upto n,
have n : n ∉ upto n, from
assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (lt.irrefl n),
nodup_cons n d
theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n :=
assume i, of_mem_of_all i (upto_less n)
theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) :=
assume i, mem_cons_of_mem _ i
theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n
| 0 i h := absurd h !not_lt_zero
| (succ n) i h :=
begin
cases h with m h',
{ rewrite upto_succ, apply mem_cons},
{ exact mem_upto_succ_of_mem_upto (mem_upto_of_lt h')}
end
/- union -/
section union
variable {A : Type}
variable [H : decidable_eq A]
include H
definition union : list A → list A → list A
| [] l₂ := l₂
| (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂
theorem nil_union (l : list A) : union [] l = l
theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ :=
take l₁, assume ainl₂, calc
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
... = union l₁ l₂ : if_pos ainl₂
theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ :=
take l₁, assume nainl₂, calc
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
... = a :: union l₁ l₂ : if_neg nainl₂
theorem union_nil : ∀ (l : list A), union l [] = l
| [] := !nil_union
| (a::l) := by rewrite [union_cons_of_not_mem _ !not_mem_nil, union_nil]
theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ a ∈ l₂
| [] l₂ a ainl₂ := by rewrite nil_union at ainl₂; exact (or.inr (ainl₂))
| (b::l₁) l₂ a ainbl₁l₂ := by_cases
(λ binl₂ : b ∈ l₂,
have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂,
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
(λ ainl₂, or.inr ainl₂))
(λ nbinl₂ : b ∉ l₂,
have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂,
or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂)
(λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons))
(λ ainl₁l₂,
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
(λ ainl₂, or.inr ainl₂)))
theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂
| [] l₂ h := by rewrite nil_union; exact h
| (b::l₁) l₂ h := by_cases
(λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h))
(λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h)))
theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂
| [] l₂ h := absurd h !not_mem_nil
| (b::l₁) l₂ h := by_cases
(λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b,
by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂))
(λ ainl₁ : a ∈ l₁,
by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁)))
(λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b,
by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons)
(λ ainl₁ : a ∈ l₁,
by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁))))
theorem mem_union_cons (a : A) (l₁ : list A) (l₂ : list A) : a ∈ union (a::l₁) l₂ :=
by_cases
(λ ainl₂ : a ∈ l₂, mem_union_right _ ainl₂)
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact !mem_cons)
theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂)
| [] l₂ n₁ nl₂ := by rewrite nil_union; exact nl₂
| (a::l₁) l₂ nal₁ nl₂ :=
assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁,
assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂,
by_cases
(λ ainl₂ : a ∈ l₂,
by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂)
(λ nainl₂ : a ∉ l₂,
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁,
assert nainl₁l₂ : a ∉ union l₁ l₂, from
assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, absurd ainl₁ nainl₁)
(λ ainl₂, absurd ainl₂ nainl₂),
by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂))
theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂
| [] l₂ d := rfl
| (a::l₁) l₂ d :=
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d,
by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁]
theorem all_union {p : A → Prop} : ∀ {l₁ l₂ : list A}, all l₁ p → all l₂ p → all (union l₁ l₂) p
| [] l₂ h₁ h₂ := h₂
| (a::l₁) l₂ h₁ h₂ :=
have h₁' : all l₁ p, from all_of_all_cons h₁,
have pa : p a, from of_all_cons h₁,
assert au : all (union l₁ l₂) p, from all_union h₁' h₂,
assert au' : all (a :: union l₁ l₂) p, from all_cons_of_all pa au,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂]; exact au)
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact au')
theorem all_of_all_union_left {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₁ p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
have ain : a ∈ union (a::l₁) l₂, from !mem_union_cons,
have pa : p a, from of_mem_of_all ain h,
by_cases
(λ ainl₂ : a ∈ l₂,
have al₁l₂ : all (union l₁ l₂) p, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact h,
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
all_cons_of_all pa al₁)
(λ nainl₂ : a ∉ l₂,
have aal₁l₂ : all (a::union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
have al₁l₂ : all (union l₁ l₂) p, from all_of_all_cons aal₁l₂,
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
all_cons_of_all pa al₁)
theorem all_of_all_union_right {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₂ p
| [] l₂ h := by rewrite [nil_union at h]; exact h
| (a::l₁) l₂ h := by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact (all_of_all_union_right h))
(λ nainl₂ : a ∉ l₂,
have h₁ : all (a :: union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
all_of_all_union_right (all_of_all_cons h₁))
variable {B : Type}
theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
: foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ :=
by rewrite [union_eq_append d, foldl_append]
theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
: foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ :=
by rewrite [union_eq_append d, foldr_append]
end union
/- insert -/
section insert
variable {A : Type}
variable [H : decidable_eq A]
include H
definition insert (a : A) (l : list A) : list A :=
if a ∈ l then l else a::l
theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l :=
assume ainl, if_pos ainl
theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l :=
assume nainl, if_neg nainl
theorem mem_insert (a : A) (l : list A) : a ∈ insert a l :=
by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons)
theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l :=
assume ainl, by_cases
(λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl)
(λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl))
theorem eq_or_mem_of_mem_insert {x a : A} {l : list A} (H : x ∈ insert a l) : x = a x ∈ l :=
decidable.by_cases
(assume H3: a ∈ l, or.inr (insert_eq_of_mem H3 ▸ H))
(assume H3: a ∉ l,
have H4: x ∈ a :: l, from insert_eq_of_not_mem H3 ▸ H,
iff.mp !mem_cons_iff H4)
theorem mem_insert_iff (x a : A) (l : list A) : x ∈ insert a l ↔ x = a x ∈ l :=
iff.intro
(!eq_or_mem_of_mem_insert)
(assume H, or.elim H
(assume H' : x = a, H'⁻¹ ▸ !mem_insert)
(assume H' : x ∈ l, !mem_insert_of_mem H'))
theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) :=
assume n, by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n))
theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl]
theorem all_insert_of_all {p : A → Prop} {a : A} {l} : p a → all l p → all (insert a l) p :=
assume h₁ h₂, by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact h₂)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (all_cons_of_all h₁ h₂))
end insert
/- inter -/
section inter
variable {A : Type}
variable [H : decidable_eq A]
include H
definition inter : list A → list A → list A
| [] l₂ := []
| (a::l₁) l₂ := if a ∈ l₂ then a :: inter l₁ l₂ else inter l₁ l₂
theorem inter_nil (l : list A) : inter [] l = []
theorem inter_cons_of_mem {a : A} (l₁ : list A) {l₂} : a ∈ l₂ → inter (a::l₁) l₂ = a :: inter l₁ l₂ :=
assume i, if_pos i
theorem inter_cons_of_not_mem {a : A} (l₁ : list A) {l₂} : a ∉ l₂ → inter (a::l₁) l₂ = inter l₁ l₂ :=
assume i, if_neg i
theorem mem_of_mem_inter_left : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₁
| [] l₂ a i := absurd i !not_mem_nil
| (b::l₁) l₂ a i := by_cases
(λ binl₂ : b ∈ l₂,
have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i,
or.elim (eq_or_mem_of_mem_cons aux)
(λ aeqb : a = b, by rewrite [aeqb]; exact !mem_cons)
(λ aini, mem_cons_of_mem _ (mem_of_mem_inter_left aini)))
(λ nbinl₂ : b ∉ l₂,
have ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_left i),
mem_cons_of_mem _ ainl₁)
theorem mem_of_mem_inter_right : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₂
| [] l₂ a i := absurd i !not_mem_nil
| (b::l₁) l₂ a i := by_cases
(λ binl₂ : b ∈ l₂,
have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i,
or.elim (eq_or_mem_of_mem_cons aux)
(λ aeqb : a = b, by rewrite [aeqb]; exact binl₂)
(λ aini : a ∈ inter l₁ l₂, mem_of_mem_inter_right aini))
(λ nbinl₂ : b ∉ l₂,
by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_right i))
theorem mem_inter_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ inter l₁ l₂
| [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil
| (b::l₁) l₂ a i₁ i₂ := by_cases
(λ binl₂ : b ∈ l₂,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqb : a = b,
by rewrite [inter_cons_of_mem _ binl₂, aeqb]; exact !mem_cons)
(λ ainl₁ : a ∈ l₁,
by rewrite [inter_cons_of_mem _ binl₂];
apply mem_cons_of_mem;
exact (mem_inter_of_mem_of_mem ainl₁ i₂)))
(λ nbinl₂ : b ∉ l₂,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂)
(λ ainl₁ : a ∈ l₁,
by rewrite [inter_cons_of_not_mem _ nbinl₂]; exact (mem_inter_of_mem_of_mem ainl₁ i₂)))
theorem nodup_inter_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (inter l₁ l₂)
| [] l₂ d := nodup_nil
| (a::l₁) l₂ d :=
have d₁ : nodup l₁, from nodup_of_nodup_cons d,
assert d₂ : nodup (inter l₁ l₂), from nodup_inter_of_nodup _ d₁,
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons d,
assert naini : a ∉ inter l₁ l₂, from λ i, absurd (mem_of_mem_inter_left i) nainl₁,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact (nodup_cons naini d₂))
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact d₂)
theorem inter_eq_nil_of_disjoint : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → inter l₁ l₂ = []
| [] l₂ d := rfl
| (a::l₁) l₂ d :=
assert aux_eq : inter l₁ l₂ = [], from inter_eq_nil_of_disjoint (disjoint_of_disjoint_cons_left d),
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
by rewrite [inter_cons_of_not_mem _ nainl₂, aux_eq]
theorem all_inter_of_all_left {p : A → Prop} : ∀ {l₁} (l₂), all l₁ p → all (inter l₁ l₂) p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
have h₁ : all l₁ p, from all_of_all_cons h,
assert h₂ : all (inter l₁ l₂) p, from all_inter_of_all_left _ h₁,
have pa : p a, from of_all_cons h,
assert h₃ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₂,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₃)
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₂)
theorem all_inter_of_all_right {p : A → Prop} : ∀ (l₁) {l₂}, all l₂ p → all (inter l₁ l₂) p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
assert h₁ : all (inter l₁ l₂) p, from all_inter_of_all_right _ h,
by_cases
(λ ainl₂ : a ∈ l₂,
have pa : p a, from of_mem_of_all ainl₂ h,
assert h₂ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₁,
by rewrite [inter_cons_of_mem _ ainl₂]; exact h₂)
(λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₁)
end inter
end list