79fa6e4940
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
57 lines
No EOL
1.9 KiB
Text
57 lines
No EOL
1.9 KiB
Text
Push
|
|
Theorem ReflIf (A : Type)
|
|
(R : A -> A -> Bool)
|
|
(Symmetry : Pi x y, R x y -> R y x)
|
|
(Transitivity : Pi x y z, R x y -> R y z -> R x z)
|
|
(Linked : Pi x, exists y, R x y)
|
|
:
|
|
Pi x, R x x :=
|
|
fun x, ExistsElim (Linked x)
|
|
(fun (w : A) (H : R x w),
|
|
let L1 : R w x := Symmetry x w H
|
|
in Transitivity x w x H L1)
|
|
Pop
|
|
|
|
Push
|
|
(*
|
|
Same example but using forall instead of Pi and => instead of ->
|
|
*)
|
|
Theorem ReflIf (A : Type)
|
|
(R : A -> A -> Bool)
|
|
(Symmetry : forall x y, R x y => R y x)
|
|
(Transitivity : forall x y z, R x y => R y z => R x z)
|
|
(Linked : forall x, exists y, R x y)
|
|
:
|
|
forall x, R x x :=
|
|
ForallIntro (fun x,
|
|
ExistsElim (ForallElim Linked x)
|
|
(fun (w : A) (H : R x w),
|
|
let L1 : R w x := (MP (ForallElim (ForallElim Symmetry x) w) H)
|
|
in (MP (MP (ForallElim (ForallElim (ForallElim Transitivity x) w) x) H) L1)))
|
|
Pop
|
|
|
|
Scope
|
|
(* Same example again. *)
|
|
Variable A : Type
|
|
Variable R : A -> A -> Bool
|
|
Axiom Symmetry {x y : A} : R x y -> R y x
|
|
Axiom Transitivity {x y z : A} : R x y -> R y z -> R x z
|
|
Axiom Linked (x : A) : exists y, R x y
|
|
|
|
Theorem ReflIf (x : A) : R x x :=
|
|
ExistsElim (Linked x) (fun (w : A) (H : R x w),
|
|
let L1 : R w x := Symmetry H
|
|
in Transitivity H L1)
|
|
|
|
(* Even more compact proof of the same theorem *)
|
|
Theorem ReflIf2 (x : A) : R x x :=
|
|
ExistsElim (Linked x) (fun w H, Transitivity H (Symmetry H))
|
|
|
|
(*
|
|
The command EndScope exports both theorem to the main scope
|
|
The variables and axioms in the scope become parameters to both theorems.
|
|
*)
|
|
EndScope
|
|
|
|
(* Display the last two theorems *)
|
|
Show Environment 2 |