lean2/library/hott/equiv.lean
2014-10-22 22:28:21 -07:00

189 lines
7.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad, Jakob von Raumer
-- Ported from Coq HoTT
import .path
open path function
-- Equivalences
-- ------------
definition Sect {A B : Type} (s : A → B) (r : B → A) := Πx : A, r (s x) ≈ x
-- -- TODO: need better means of declaring structures
-- -- TODO: note that Coq allows projections to be declared to be coercions on the fly
-- Structure IsEquiv
inductive IsEquiv [class] {A B : Type} (f : A → B) :=
IsEquiv_mk : Π
(inv : B → A)
(retr : Sect inv f)
(sect : Sect f inv)
(adj : Πx, retr (f x) ≈ ap f (sect x)),
IsEquiv f
namespace IsEquiv
definition inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A :=
IsEquiv.rec (λinv retr sect adj, inv) H
-- TODO: note: does not type check without giving the type
definition retr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (inv H) f :=
IsEquiv.rec (λinv retr sect adj, retr) H
definition sect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (inv H) :=
IsEquiv.rec (λinv retr sect adj, sect) H
definition adj {A B : Type} {f : A → B} (H : IsEquiv f) :
Πx, retr H (f x) ≈ ap f (sect H x) :=
IsEquiv.rec (λinv retr sect adj, adj) H
end IsEquiv
-- Structure Equiv
inductive Equiv (A B : Type) : Type :=
Equiv_mk : Π
(equiv_fun : A → B)
(equiv_isequiv : IsEquiv equiv_fun),
Equiv A B
namespace Equiv
definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B :=
Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e
definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) :=
Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e
infix `≃`:25 := Equiv
notation e `⁻¹` := IsEquiv.inv e
end Equiv
-- Some instances and closure properties of equivalences
namespace IsEquiv
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
-- The identity function is an equivalence.
definition id_closed [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
definition comp_closed [instance] (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) :=
IsEquiv_mk ((inv Hf) ∘ (inv Hg))
(λc, ap g (retr Hf ((inv Hg) c)) ⬝ retr Hg c)
(λa, ap (inv Hf) (sect Hg (f a)) ⬝ sect Hf a)
(λa, (whiskerL _ (adj Hg (f a))) ⬝
(ap_pp g _ _)⁻¹ ⬝
ap02 g (concat_A1p (retr Hf) (sect Hg (f a))⁻¹ ⬝
(ap_compose (inv Hf) f _ ◾ adj Hf a) ⬝
(ap_pp f _ _)⁻¹
) ⬝
(ap_compose f g _)⁻¹
)
-- Any function equal to an equivalence is an equivlance as well.
definition path_closed (Hf : IsEquiv f) (Heq : f ≈ f') : (IsEquiv f') :=
path.induction_on Heq Hf
-- Any function pointwise equal to an equivalence is an equivalence as well.
definition homotopic (Hf : IsEquiv f) (Heq : f f') : (IsEquiv f') :=
let sect' := (λ b, (Heq (inv Hf b))⁻¹ ⬝ retr Hf b) in
let retr' := (λ a, (ap (inv Hf) (Heq a))⁻¹ ⬝ sect Hf a) in
let adj' := (λ (a : A),
let ff'a := Heq a in
let invf := inv Hf in
let secta := sect Hf a in
let retrfa := retr Hf (f a) in
let retrf'a := retr Hf (f' a) in
have eq1 : _ ≈ _,
from calc ap f secta ⬝ ff'a
≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f ff'a},
have eq2 : _ ≈ _,
from calc retrf'a
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Heq a) : {ap_V invf ff'a}
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (Heq (invf (f a)) ⬝ ap f' secta) : {!concat_Ap}
... ≈ (ap f (ap invf ff'a)⁻¹ ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!concat_pp_p⁻¹}
... ≈ (ap f ((ap invf ff'a)⁻¹) ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!ap_V⁻¹}
... ≈ (Heq (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!concat_Ap}
... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V}
... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p,
have eq3 : _ ≈ _,
from calc (Heq (invf (f' a)))⁻¹ ⬝ retr Hf (f' a)
≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹}
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
eq3) in
IsEquiv_mk (inv Hf) sect' retr' adj'
--TODO: Maybe wait until rewrite rules are available.
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) :=
IsEquiv_mk sorry sorry sorry sorry
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a))
definition transport (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
--Rewrite rules
section
variables {Hf : IsEquiv f}
definition moveR_M {x : A} {y : B} (p : x ≈ (inv Hf) y) : (f x ≈ y) :=
(ap f p) ⬝ (retr Hf y)
definition moveL_M {x : A} {y : B} (p : (inv Hf) y ≈ x) : (y ≈ f x) :=
(moveR_M (p⁻¹))⁻¹
definition moveR_V {x : B} {y : A} (p : x ≈ f y) : (inv Hf) x ≈ y :=
ap (inv Hf) p ⬝ sect Hf y
definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x :=
(moveR_V (p⁻¹))⁻¹
end
end IsEquiv
namespace Equiv
variables {A B C : Type} (eqf : A ≃ B)
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
theorem compose (eqg: B ≃ C) : A ≃ C :=
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
check IsEquiv.path_closed
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
theorem inv_closed : B ≃ A :=
Equiv_mk (IsEquiv.inv (equiv_isequiv eqf)) (IsEquiv.inv_closed (equiv_isequiv eqf))
theorem cancel_L {f : A → B} {g : B → C}
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
Equiv_mk g (IsEquiv.cancel_R _ _)
theorem cancel_R {f : A → B} {g : B → C}
(Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B :=
Equiv_mk f (!IsEquiv.cancel_L _ _)
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
Equiv_mk (transport P p) (IsEquiv.transport P p)
end Equiv