7e52c49dce
Prove that 'is_left_adjoint F' is a mere proposition, although this proof is commented out because it takes ~10 seconds
226 lines
8.8 KiB
Text
226 lines
8.8 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
-/
|
||
|
||
import algebra.category.constructions function arity
|
||
|
||
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
|
||
|
||
namespace category
|
||
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||
|
||
-- do we want to have a structure "is_adjoint" and define
|
||
-- structure is_left_adjoint (F : C ⇒ D) :=
|
||
-- (right_adjoint : D ⇒ C) -- G
|
||
-- (is_adjoint : adjoint F right_adjoint)
|
||
|
||
structure is_left_adjoint [class] (F : C ⇒ D) :=
|
||
(G : D ⇒ C)
|
||
(η : 1 ⟹ G ∘f F)
|
||
(ε : F ∘f G ⟹ 1)
|
||
(H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c))
|
||
(K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d))
|
||
|
||
abbreviation right_adjoint := @is_left_adjoint.G
|
||
abbreviation unit := @is_left_adjoint.η
|
||
abbreviation counit := @is_left_adjoint.ε
|
||
|
||
-- structure is_left_adjoint [class] (F : C ⇒ D) :=
|
||
-- (right_adjoint : D ⇒ C) -- G
|
||
-- (unit : functor.id ⟹ right_adjoint ∘f F) -- η
|
||
-- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε
|
||
-- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c))
|
||
-- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d))
|
||
|
||
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
|
||
mk' ::
|
||
(is_iso_unit : is_iso η)
|
||
(is_iso_counit : is_iso ε)
|
||
|
||
abbreviation inverse := @is_equivalence.G
|
||
postfix `⁻¹` := inverse
|
||
--a second notation for the inverse, which is not overloaded
|
||
postfix [parsing-only] `⁻¹F`:std.prec.max_plus := inverse
|
||
|
||
structure equivalence (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_equivalence to_functor)
|
||
|
||
--TODO: review and change
|
||
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
|
||
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
|
||
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
|
||
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
|
||
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
|
||
definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F
|
||
definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F)
|
||
|
||
structure isomorphism (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_isomorphism to_functor)
|
||
-- infix `⊣`:55 := adjoint
|
||
|
||
infix `⋍`:25 := equivalence -- \backsimeq or \equiv
|
||
infix `≌`:25 := isomorphism -- \backcong or \iso
|
||
|
||
definition is_equiv_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F] (c c' : C)
|
||
: is_equiv (@(to_fun_hom F) c c') :=
|
||
!H
|
||
|
||
definition is_iso_unit [instance] (F : C ⇒ D) (H : is_equivalence F) : is_iso (unit F) :=
|
||
!is_equivalence.is_iso_unit
|
||
|
||
definition is_iso_counit [instance] (F : C ⇒ D) (H : is_equivalence F) : is_iso (counit F) :=
|
||
!is_equivalence.is_iso_counit
|
||
|
||
-- theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
|
||
-- : is_hprop (is_left_adjoint F) :=
|
||
-- begin
|
||
-- apply is_hprop.mk,
|
||
-- intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
|
||
-- assert lem : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
|
||
-- → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
|
||
-- { intros p q r, induction p, induction q, induction r, esimp,
|
||
-- apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
|
||
-- fapply lem,
|
||
-- { fapply functor.eq_of_pointwise_iso,
|
||
-- { fapply change_natural_map,
|
||
-- { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
|
||
-- { intro d, exact (G' (ε d) ∘ η' (G d))},
|
||
-- { intro d, exact ap (λx, _ ∘ x) !id_left}},
|
||
-- { intro d, fconstructor,
|
||
-- { exact (G (ε' d) ∘ η (G' d))},
|
||
-- { krewrite [▸*,assoc,-assoc (G (ε' d))],
|
||
-- krewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
|
||
-- krewrite [assoc,-assoc],
|
||
-- rewrite [↑functor.compose, -respect_comp G],
|
||
-- krewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
|
||
-- rewrite [respect_comp G],
|
||
-- krewrite [assoc,-assoc (G (ε d))],
|
||
-- rewrite [↑functor.compose, -respect_comp G],
|
||
-- krewrite [H' (G d)],
|
||
-- rewrite [respect_id,id_right],
|
||
-- apply K},
|
||
-- { krewrite [▸*,assoc,-assoc (G' (ε d))],
|
||
-- krewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
|
||
-- krewrite [assoc,-assoc],
|
||
-- rewrite [↑functor.compose, -respect_comp G'],
|
||
-- krewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d),▸*],
|
||
-- rewrite [respect_comp G'],
|
||
-- krewrite [assoc,-assoc (G' (ε' d))],
|
||
-- rewrite [↑functor.compose, -respect_comp G'],
|
||
-- krewrite [H (G' d)],
|
||
-- rewrite [respect_id,id_right],
|
||
-- apply K'}}},
|
||
-- { clear lem, refine transport_hom_of_eq_right _ η ⬝ _,
|
||
-- krewrite hom_of_eq_compose_right,
|
||
-- rewrite functor.hom_of_eq_eq_of_pointwise_iso,
|
||
-- apply nat_trans_eq, intro c, esimp,
|
||
-- refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
|
||
-- rewrite [▸*,-respect_comp G',H c,respect_id G',id_left]},
|
||
-- { clear lem, refine transport_hom_of_eq_left _ ε ⬝ _,
|
||
-- krewrite inv_of_eq_compose_left,
|
||
-- rewrite functor.inv_of_eq_eq_of_pointwise_iso,
|
||
-- apply nat_trans_eq, intro d, esimp,
|
||
-- rewrite [respect_comp,assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]},
|
||
-- end
|
||
|
||
section
|
||
variables (F G)
|
||
variables (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1)
|
||
include η ε
|
||
--definition inverse_of_unit_counit
|
||
|
||
definition is_equivalence.mk : is_equivalence F :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
end
|
||
|
||
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
|
||
λc c', is_surjective.mk (λg, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv))
|
||
|
||
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
|
||
λc c' f f' p, is_injective_of_is_embedding p
|
||
|
||
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
apply is_equiv_of_is_surjective_of_is_embedding,
|
||
{ apply is_embedding_of_is_injective,
|
||
intros f f' p, exact H p},
|
||
{ apply K}
|
||
end
|
||
|
||
definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
|
||
: fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
fapply adjointify,
|
||
{ intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c},
|
||
{ intro g, rewrite [+respect_comp], exact sorry},
|
||
{ exact sorry},
|
||
end
|
||
|
||
definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F]
|
||
: split_essentially_surjective F :=
|
||
begin
|
||
intro d, fconstructor,
|
||
{ exact F⁻¹ d},
|
||
{ exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d}
|
||
end
|
||
|
||
/-
|
||
|
||
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv (F : C ⇒ D)
|
||
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
|
||
: is_equivalence F ≃ is_weak_equivalence F :=
|
||
sorry
|
||
|
||
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
|
||
≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1),
|
||
sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
|
||
≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 :=
|
||
sorry
|
||
|
||
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
|
||
sorry
|
||
|
||
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
|
||
: is_isomorphism F :=
|
||
sorry
|
||
|
||
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
|
||
sorry
|
||
|
||
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
|
||
sorry
|
||
|
||
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
|
||
sorry
|
||
|
||
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
|
||
sorry
|
||
-/
|
||
end category
|