lean2/tests/lean/run/gcd.lean

51 lines
1.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import data.nat data.prod logic.wf_k
open nat well_founded decidable prod eq.ops
namespace playground
-- Setup
definition pair_nat.lt := lex lt lt
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
intro_k (prod.lex.wf lt.wf lt.wf) 20 -- the '20' is for being able to execute the examples... it means 20 recursive call without proof computation
infixl `≺`:50 := pair_nat.lt
-- Lemma for justifying recursive call
private lemma lt₁ (x₁ y₁ : nat) : (x₁ - y₁, succ y₁) ≺ (succ x₁, succ y₁) :=
!lex.left (le_imp_lt_succ (sub_le_self x₁ y₁))
-- Lemma for justifying recursive call
private lemma lt₂ (x₁ y₁ : nat) : (succ x₁, y₁ - x₁) ≺ (succ x₁, succ y₁) :=
!lex.right (le_imp_lt_succ (sub_le_self y₁ x₁))
definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat :=
prod.cases_on p₁ (λ (x y : nat),
nat.cases_on x
(λ f, y) -- x = 0
(λ x₁, nat.cases_on y
(λ f, succ x₁) -- y = 0
(λ y₁ (f : (Π p₂ : nat × nat, p₂ ≺ (succ x₁, succ y₁) → nat)),
if y₁ ≤ x₁ then f (x₁ - y₁, succ y₁) !lt₁
else f (succ x₁, y₁ - x₁) !lt₂)))
definition gcd (x y : nat) :=
fix gcd.F (pair x y)
theorem gcd_def_z_y (y : nat) : gcd 0 y = y :=
well_founded.fix_eq gcd.F (0, y)
theorem gcd_def_sx_z (x : nat) : gcd (x+1) 0 = x+1 :=
well_founded.fix_eq gcd.F (x+1, 0)
theorem gcd_def_sx_sy (x y : nat) : gcd (x+1) (y+1) = if y ≤ x then gcd (x-y) (y+1) else gcd (x+1) (y-x) :=
well_founded.fix_eq gcd.F (x+1, y+1)
example : gcd 4 6 = 2 :=
rfl
example : gcd 15 6 = 3 :=
rfl
example : gcd 0 2 = 2 :=
rfl
end playground