lean2/hott/algebra/homotopy_group.hlean
2015-11-16 21:32:09 -08:00

53 lines
1.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import types.pointed .trunc_group
open nat eq pointed trunc is_trunc algebra
namespace eq
definition homotopy_group [reducible] (n : ) (A : Pointed) : Type :=
trunc 0 (Ω[n] A)
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
definition pointed_homotopy_group [instance] [constructor] (n : ) (A : Pointed)
: pointed (π[n] A) :=
pointed.mk (tr rfln)
definition group_homotopy_group [instance] [constructor] (n : ) (A : Pointed)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition comm_group_homotopy_group [constructor] (n : ) (A : Pointed)
: comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance]
definition Pointed_homotopy_group [constructor] (n : ) (A : Pointed) : Pointed :=
Pointed.mk (π[n] A)
definition Group_homotopy_group [constructor] (n : ) (A : Pointed) : Group :=
Group.mk (π[succ n] A) _
definition CommGroup_homotopy_group [constructor] (n : ) (A : Pointed) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Pointed) : Group :=
Group_homotopy_group zero A
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
notation `πG[`:95 n:0 ` +1] `:0 A:95 := Group_homotopy_group n A
notation `πaG[`:95 n:0 ` +2] `:0 A:95 := CommGroup_homotopy_group n A
prefix `π₁`:95 := fundamental_group
end eq