lean2/library/algebra/order.lean

241 lines
8.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.order
Author: Jeremy Avigad
Various types of orders. We develop weak orders (<=) and strict orders (<) separately. We also
consider structures with both, where the two are related by
x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair)
x ≤ y ↔ (x < y x = y) (strong_order_pair)
These might not hold constructively in some applications, but we can define additional structures
with both < and ≤ as needed.
-/
import logic.eq
import data.unit data.sigma data.prod
import algebra.function algebra.binary
open eq eq.ops
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_le [class] (A : Type) :=
(le : A → A → Prop)
structure has_lt [class] (A : Type) :=
(lt : A → A → Prop)
infixl `<=` := has_le.le
infixl `≤` := has_le.le
infixl `<` := has_lt.lt
definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a
notation a ≥ b := has_le.ge a b
notation a >= b := has_le.ge a b
definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a
notation a > b := has_lt.gt a b
theorem le_of_eq_of_le {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) :
a ≤ c := H1⁻¹ ▸ H2
theorem le_of_le_of_eq {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) :
a ≤ c := H2 ▸ H1
theorem lt_of_eq_of_lt {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) :
a < c := H1⁻¹ ▸ H2
theorem lt_of_lt_of_eq {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) :
a < c := H2 ▸ H1
calc_trans le_of_eq_of_le
calc_trans le_of_le_of_eq
calc_trans lt_of_eq_of_lt
calc_trans lt_of_lt_of_eq
/- weak orders -/
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : ∀a, le a a)
(le_trans : ∀a b c, le a b → le b c → le a c)
(le_antisym : ∀a b, le a b → le b a → a = b)
theorem le.refl [s : weak_order A] (a : A) : a ≤ a := !weak_order.le_refl
theorem le.trans [s : weak_order A] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
calc_trans le.trans
theorem le.antisym [s : weak_order A] {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisym
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : ∀a b, le a b le b a)
theorem le.total [s : linear_weak_order A] {a b : A} : a ≤ b b ≤ a :=
!linear_weak_order.le_total
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : ∀a, ¬ lt a a)
(lt_trans : ∀a b c, lt a b → lt b c → lt a c)
theorem lt.irrefl [s : strict_order A] (a : A) : ¬ a < a := !strict_order.lt_irrefl
theorem lt.trans [s : strict_order A] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
calc_trans lt.trans
theorem lt.ne [s : strict_order A] {a b : A} : a < b → a ≠ b :=
assume lt_ab : a < b, assume eq_ab : a = b, lt.irrefl a (eq_ab⁻¹ ▸ lt_ab)
/- well-founded orders -/
-- TODO: do these duplicate what Leo has done? if so, eliminate
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf.rec_on x H
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b))
theorem lt_iff_le_and_ne [s : order_pair A] {a b : A} : a < b ↔ (a ≤ b ∧ a ≠ b) :=
!order_pair.lt_iff_le_ne
theorem le_of_lt [s : order_pair A] {a b : A} (H : a < b) : a ≤ b :=
and.elim_left (iff.mp lt_iff_le_and_ne H)
theorem lt_of_le_of_ne [s : order_pair A] {a b : A} (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2)
definition order_pair.to_strict_order [instance] [s : order_pair A] : strict_order A :=
strict_order.mk
order_pair.lt
(show ∀a, ¬ a < a, from
take a,
assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H),
H1 rfl)
(show ∀a b c, a < b → b < c → a < c, from
take a b c,
assume lt_ab : a < b,
have le_ab : a ≤ b, from le_of_lt lt_ab,
assume lt_bc : b < c,
have le_bc : b ≤ c, from le_of_lt lt_bc,
have le_ac : a ≤ c, from le.trans le_ab le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisym le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab),
ne_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac)
theorem lt_of_lt_of_le [s : order_pair A] {a b c : A} : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisym (le_of_lt lt_ab) le_ba,
show false, from lt.ne lt_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac
theorem lt_of_le_of_lt [s : order_pair A] {a b c : A} : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisym (le_of_lt lt_bc) le_cb,
show false, from lt.ne lt_bc eq_bc,
show a < c, from lt_of_le_of_ne le_ac ne_ac
calc_trans lt_of_lt_of_le
calc_trans lt_of_le_of_lt
structure strong_order_pair [class] (A : Type) extends order_pair A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b a = b :=
!strong_order_pair.le_iff_lt_or_eq
theorem le_imp_lt_or_eq [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b a = b :=
iff.mp le_iff_lt_or_eq le_ab
-- We can also construct a strong order pair by defining a strict order, and then defining
-- x ≤ y ↔ x < y x = y
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
definition strict_order_with_le.to_order_pair [instance] [s : strict_order_with_le A] : strong_order_pair A :=
strong_order_pair.mk strict_order_with_le.le
(take a, show a ≤ a, from iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl))
(take a b c,
assume le_ab : a ≤ b,
assume le_bc : b ≤ c,
show a ≤ c, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
(assume lt_bc : b < c,
iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc))
(take a b,
assume le_ab : a ≤ b,
assume le_ba : b ≤ a,
show a = b, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab))
strict_order_with_le.lt
(take a b,
iff.intro
(assume lt_ab : a < b,
have le_ab : a ≤ b, from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (lt.ne lt_ab))
(assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b, from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H),
show a < b, from or.resolve_left H1 (and.elim_right H)))
strict_order_with_le.le_iff_lt_or_eq
/- linear orders -/
structure linear_order_pair (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair (A : Type) extends strong_order_pair A :=
(trichotomy : ∀a b, lt a b a = b lt b a)
end algebra