lean2/tests/lean/elab1.lean.expected.out
Leonardo de Moura 812c1a2960 feat(library/elaborator): only expand definitions that are not marked as hidden
The elaborator produces better proof terms. This is particularly important when we have to prove the remaining holes using tactics.
For example, in one of the tests, the elaborator was producing the sub-expression

 (λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ⊤) == (λ x : N, ⊤)) ⊥ ⊤)

After, this commit it produces

 (λ x : N, ¬ ∀ x::1 : N, ¬ P a x x::1)

The expressions above are definitionally equal, but the second is easier to work with.

Question: do we really need hidden definitions?
Perhaps, we can use only the opaque flag.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-12-20 02:16:49 -08:00

398 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Assumed: f
Failed to solve
⊢ (?M::1 ≈ λ x : , x) ⊕ (?M::1 ≈ nat_to_int) ⊕ (?M::1 ≈ nat_to_real)
(line: 4: pos: 8) Coercion for
10
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
x : ≈ ?M::5
Destruct/Decompose
≈ Π x : ?M::4, ?M::5
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ λ x : , x
Assumption 0
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
a : ≈ ?M::5
Destruct/Decompose
≈ Π x : ?M::4, ?M::5
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ nat_to_int
Assumption 1
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
a : ≈ ?M::5
Destruct/Decompose
≈ Π x : ?M::4, ?M::5
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ nat_to_real
Assumption 2
Assumed: g
Error (line: 7, pos: 8) unexpected metavariable occurrence
Assumed: h
Failed to solve
x : ?M::0, A : Type ⊢ ?M::0 ≺ A
(line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of
h
with arguments:
A
x
Assumed: my_eq
Failed to solve
A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C
(line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of
my_eq
with arguments:
C
a
b
Assumed: a
Assumed: b
Assumed: H
Failed to solve
⊢ ?M::0 ⇒ ?M::3 ∧ a ≺ b
Substitution
⊢ ?M::0 ⇒ ?M::1 ≺ b
(line: 20: pos: 18) Type of definition 't1' must be convertible to expected type.
Assignment
H1 : ?M::2 ⊢ ?M::3 ∧ a ≺ ?M::1
Substitution
H1 : ?M::2 ⊢ ?M::3 ∧ ?M::4 ≺ ?M::1
Destruct/Decompose
⊢ Π H1 : ?M::2, ?M::3 ∧ ?M::4 ≺ Π a : ?M::0, ?M::1
(line: 20: pos: 18) Type of argument 3 must be convertible to the expected type in the application of
Discharge::explicit
with arguments:
?M::0
?M::1
λ H1 : ?M::2, Conj H1 (Conjunct1 H)
Assignment
H1 : ?M::2 ⊢ a ≺ ?M::4
Substitution
H1 : ?M::2 ⊢ ?M::5 ≺ ?M::4
(line: 20: pos: 37) Type of argument 4 must be convertible to the expected type in the application of
Conj::explicit
with arguments:
?M::3
?M::4
H1
Conjunct1 H
Assignment
H1 : ?M::2 ⊢ a ≈ ?M::5
Destruct/Decompose
H1 : ?M::2 ⊢ a ∧ b ≺ ?M::5 ∧ ?M::6
(line: 20: pos: 45) Type of argument 3 must be convertible to the expected type in the application of
Conjunct1::explicit
with arguments:
?M::5
?M::6
H
Failed to solve
⊢ b ≈ a
Substitution
⊢ b ≈ ?M::3
Destruct/Decompose
⊢ b == b ≺ ?M::3 == ?M::4
(line: 22: pos: 22) Type of argument 6 must be convertible to the expected type in the application of
Trans::explicit
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Assignment
⊢ a ≈ ?M::3
Destruct/Decompose
⊢ a == a ≺ ?M::2 == ?M::3
(line: 22: pos: 22) Type of argument 5 must be convertible to the expected type in the application of
Trans::explicit
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Failed to solve
⊢ (?M::1 ≈ Type) ⊕ (?M::1 ≈ Bool)
Destruct/Decompose
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Failed to solve
(?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (Type 1) ≺ Type
Substitution
⊢ (Type 1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 1
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type 2) ≺ Type
Substitution
⊢ (Type 2) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 1)
Assumption 2
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type 3) ≺ Type
Substitution
⊢ (Type 3) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 2)
Assumption 3
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type M+1) ≺ Type
Substitution
⊢ (Type M+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 4
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type U+1) ≺ Type
Substitution
⊢ (Type U+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 5
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
(?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (Type 1) ≺ Bool
Substitution
⊢ (Type 1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 7
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
⊢ (Type 2) ≺ Bool
Substitution
⊢ (Type 2) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 1)
Assumption 8
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
⊢ (Type 3) ≺ Bool
Substitution
⊢ (Type 3) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 2)
Assumption 9
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
⊢ (Type M+1) ≺ Bool
Substitution
⊢ (Type M+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 10
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
⊢ (Type U+1) ≺ Bool
Substitution
⊢ (Type U+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 11
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
Substitution
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1]
Substitution
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ ?M::2[lift:0:2] ≺ ?M::5[lift:0:1]
Destruct/Decompose
a : Bool, b : Bool, H : ?M::2 ⊢ Π H_a : ?M::6, ?M::2[lift:0:2] ≺ Π a : ?M::3, ?M::5[lift:0:1]
(line: 27: pos: 21) Type of argument 5 must be convertible to the expected type in the application of
DisjCases::explicit
with arguments:
?M::3
?M::4
?M::5
EM a
λ H_a : ?M::6, H
λ H_na : ?M::7, NotImp1 (MT H H_na)
Normalize assignment
?M::0
Assignment
a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0
Destruct/Decompose
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
Discharge::explicit
with arguments:
?M::0
?M::1
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.
Assignment
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ a
Substitution
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ ?M::1[lift:0:1]
Destruct/Decompose
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
Discharge::explicit
with arguments:
?M::0
?M::1
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::1 ≈ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.