2185ee7e95
The new let tactic is semantically equivalent to let terms, while `note` preserves its old opaque behavior.
268 lines
9.9 KiB
Text
268 lines
9.9 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Adjoint functors
|
|
-/
|
|
|
|
import .attributes .examples
|
|
|
|
open functor nat_trans is_trunc eq iso prod
|
|
|
|
namespace category
|
|
|
|
structure adjoint {C D : Precategory} (F : C ⇒ D) (G : D ⇒ C) :=
|
|
(η : 1 ⟹ G ∘f F)
|
|
(ε : F ∘f G ⟹ 1)
|
|
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
|
|
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
|
|
|
|
abbreviation to_unit [unfold 5] := @adjoint.η
|
|
abbreviation to_counit [unfold 5] := @adjoint.ε
|
|
abbreviation to_counit_unit_eq [unfold 5] := @adjoint.H
|
|
abbreviation to_unit_counit_eq [unfold 5] := @adjoint.K
|
|
|
|
-- TODO: define is_left_adjoint in terms of adjoint:
|
|
-- structure is_left_adjoint (F : C ⇒ D) :=
|
|
-- (G : D ⇒ C) -- G
|
|
-- (is_adjoint : adjoint F G)
|
|
|
|
infix ` ⊣ `:55 := adjoint
|
|
|
|
structure is_left_adjoint [class] {C D : Precategory} (F : C ⇒ D) :=
|
|
(G : D ⇒ C)
|
|
(η : 1 ⟹ G ∘f F)
|
|
(ε : F ∘f G ⟹ 1)
|
|
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
|
|
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
|
|
|
|
abbreviation right_adjoint [unfold 4] := @is_left_adjoint.G
|
|
abbreviation unit [unfold 4] := @is_left_adjoint.η
|
|
abbreviation counit [unfold 4] := @is_left_adjoint.ε
|
|
abbreviation counit_unit_eq [unfold 4] := @is_left_adjoint.H
|
|
abbreviation unit_counit_eq [unfold 4] := @is_left_adjoint.K
|
|
|
|
theorem is_hprop_is_left_adjoint [instance] {C : Category} {D : Precategory} (F : C ⇒ D)
|
|
: is_hprop (is_left_adjoint F) :=
|
|
begin
|
|
apply is_hprop.mk,
|
|
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
|
|
assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
|
|
→ is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
|
|
{ intros p q r, induction p, induction q, induction r, esimp,
|
|
apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
|
|
assert lem₂ : Π (d : carrier D),
|
|
(to_fun_hom G (natural_map ε' d) ∘
|
|
natural_map η (to_fun_ob G' d)) ∘
|
|
to_fun_hom G' (natural_map ε d) ∘
|
|
natural_map η' (to_fun_ob G d) = id,
|
|
{ intro d, esimp,
|
|
rewrite [assoc],
|
|
rewrite [-assoc (G (ε' d))],
|
|
esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
|
|
esimp, rewrite [assoc],
|
|
esimp, rewrite [-assoc],
|
|
rewrite [↑functor.compose, -respect_comp G],
|
|
rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
|
|
rewrite [respect_comp G],
|
|
rewrite [assoc,▸*,-assoc (G (ε d))],
|
|
rewrite [↑functor.compose, -respect_comp G],
|
|
rewrite [H' (G d)],
|
|
rewrite [respect_id,▸*,id_right],
|
|
apply K},
|
|
assert lem₃ : Π (d : carrier D),
|
|
(to_fun_hom G' (natural_map ε d) ∘
|
|
natural_map η' (to_fun_ob G d)) ∘
|
|
to_fun_hom G (natural_map ε' d) ∘
|
|
natural_map η (to_fun_ob G' d) = id,
|
|
{ intro d, esimp,
|
|
rewrite [assoc, -assoc (G' (ε d))],
|
|
esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
|
|
esimp, rewrite [assoc], esimp, rewrite [-assoc],
|
|
rewrite [↑functor.compose, -respect_comp G'],
|
|
rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
|
|
esimp,
|
|
rewrite [respect_comp G'],
|
|
rewrite [assoc,▸*,-assoc (G' (ε' d))],
|
|
rewrite [↑functor.compose, -respect_comp G'],
|
|
rewrite [H (G' d)],
|
|
rewrite [respect_id,▸*,id_right],
|
|
apply K'},
|
|
fapply lem₁,
|
|
{ fapply functor.eq_of_pointwise_iso,
|
|
{ fapply change_natural_map,
|
|
{ exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
|
|
{ intro d, exact (G' (ε d) ∘ η' (G d))},
|
|
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
|
|
{ intro d, fconstructor,
|
|
{ exact (G (ε' d) ∘ η (G' d))},
|
|
{ exact lem₂ d },
|
|
{ exact lem₃ d }}},
|
|
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
|
|
krewrite hom_of_eq_compose_right,
|
|
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
|
|
apply nat_trans_eq, intro c, esimp,
|
|
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
|
|
esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]},
|
|
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
|
|
krewrite inv_of_eq_compose_left,
|
|
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
|
|
apply nat_trans_eq, intro d, esimp,
|
|
krewrite [respect_comp],
|
|
rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
|
|
end
|
|
|
|
section
|
|
universe variables u v w
|
|
parameters {C : Precategory.{u v}} {D : Precategory.{w v}} {F : C ⇒ D} {G : D ⇒ C}
|
|
(θ : hom_functor D ∘f prod_functor_prod Fᵒᵖᶠ 1 ≅ hom_functor C ∘f prod_functor_prod 1 G)
|
|
include θ
|
|
|
|
definition adj_unit [constructor] : 1 ⟹ G ∘f F :=
|
|
begin
|
|
fapply nat_trans.mk: esimp,
|
|
{ intro c, exact natural_map (to_hom θ) (c, F c) id},
|
|
{ intro c c' f,
|
|
note H := naturality (to_hom θ) (ID c, F f),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right],
|
|
clear H K,
|
|
note H := naturality (to_hom θ) (f, ID (F c')),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, respect_id at K,+id_left at K, K]}
|
|
end
|
|
|
|
definition adj_counit [constructor] : F ∘f G ⟹ 1 :=
|
|
begin
|
|
fapply nat_trans.mk: esimp,
|
|
{ intro d, exact natural_map (to_inv θ) (G d, d) id, },
|
|
{ intro d d' g,
|
|
note H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left],
|
|
clear H K,
|
|
note H := naturality (to_inv θ) (ID (G d), g),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, respect_id at K,+id_right at K, K]}
|
|
end
|
|
|
|
theorem adj_eq_unit (c : C) (d : D) (f : F c ⟶ d)
|
|
: natural_map (to_hom θ) (c, d) f = G f ∘ adj_unit c :=
|
|
begin
|
|
esimp,
|
|
note H := naturality (to_hom θ) (ID c, f),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, id_right at K, K, respect_id, +id_right],
|
|
end
|
|
|
|
theorem adj_eq_counit (c : C) (d : D) (g : c ⟶ G d)
|
|
: natural_map (to_inv θ) (c, d) g = adj_counit d ∘ F g :=
|
|
begin
|
|
esimp,
|
|
note H := naturality (to_inv θ) (g, ID d),
|
|
note K := ap10 H id,
|
|
rewrite [▸* at K, id_left at K, K, respect_id, +id_left],
|
|
end
|
|
|
|
definition adjoint.mk' [constructor] : F ⊣ G :=
|
|
begin
|
|
fapply adjoint.mk,
|
|
{ exact adj_unit},
|
|
{ exact adj_counit},
|
|
{ intro c, esimp, refine (adj_eq_counit c (F c) (adj_unit c))⁻¹ ⬝ _,
|
|
apply ap10 (to_left_inverse (componentwise_iso θ (c, F c)))},
|
|
{ intro d, esimp, refine (adj_eq_unit (G d) d (adj_counit d))⁻¹ ⬝ _,
|
|
apply ap10 (to_right_inverse (componentwise_iso θ (G d, d)))},
|
|
end
|
|
|
|
end
|
|
/- TODO (below): generalize above definitions to arbitrary categories
|
|
section
|
|
universe variables u₁ u₂ v₁ v₂
|
|
parameters {C : Precategory.{u₁ v₁}} {D : Precategory.{u₂ v₂}} {F : C ⇒ D} {G : D ⇒ C}
|
|
(θ : functor_lift.{v₂ v₁} ∘f hom_functor D ∘f prod_functor_prod Fᵒᵖᶠ 1 ≅
|
|
functor_lift.{v₁ v₂} ∘f hom_functor C ∘f prod_functor_prod 1 G)
|
|
include θ
|
|
open lift
|
|
definition adj_unit [constructor] : 1 ⟹ G ∘f F :=
|
|
begin
|
|
fapply nat_trans.mk: esimp,
|
|
{ intro c, exact down (natural_map (to_hom θ) (c, F c) (up id))},
|
|
{ intro c c' f,
|
|
let H := naturality (to_hom θ) (ID c, F f),
|
|
let K := ap10 H (up id),
|
|
rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right],
|
|
clear H K,
|
|
let H := naturality (to_hom θ) (f, ID (F c')),
|
|
let K := ap10 H id,
|
|
rewrite [▸* at K, respect_id at K,+id_left at K, K]}
|
|
end
|
|
|
|
definition adj_counit [constructor] : F ∘f G ⟹ 1 :=
|
|
begin
|
|
fapply nat_trans.mk: esimp,
|
|
{ intro d, exact natural_map (to_inv θ) (G d, d) id, },
|
|
{ intro d d' g,
|
|
let H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'),
|
|
let K := ap10 H id,
|
|
rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left],
|
|
clear H K,
|
|
let H := naturality (to_inv θ) (ID (G d), g),
|
|
let K := ap10 H id,
|
|
rewrite [▸* at K, respect_id at K,+id_right at K, K]}
|
|
end
|
|
|
|
theorem adj_eq_unit (c : C) (d : D) (f : F c ⟶ d)
|
|
: natural_map (to_hom θ) (c, d) (up f) = G f ∘ adj_unit c :=
|
|
begin
|
|
esimp,
|
|
let H := naturality (to_hom θ) (ID c, f),
|
|
let K := ap10 H id,
|
|
rewrite [▸* at K, id_right at K, K, respect_id, +id_right],
|
|
end
|
|
|
|
theorem adj_eq_counit (c : C) (d : D) (g : c ⟶ G d)
|
|
: natural_map (to_inv θ) (c, d) (up g) = adj_counit d ∘ F g :=
|
|
begin
|
|
esimp,
|
|
let H := naturality (to_inv θ) (g, ID d),
|
|
let K := ap10 H id,
|
|
rewrite [▸* at K, id_left at K, K, respect_id, +id_left],
|
|
end
|
|
|
|
definition adjoint.mk' [constructor] : F ⊣ G :=
|
|
begin
|
|
fapply adjoint.mk,
|
|
{ exact adj_unit},
|
|
{ exact adj_counit},
|
|
{ intro c, esimp, refine (adj_eq_counit c (F c) (adj_unit c))⁻¹ ⬝ _,
|
|
apply ap10 (to_left_inverse (componentwise_iso θ (c, F c)))},
|
|
{ intro d, esimp, refine (adj_eq_unit (G d) d (adj_counit d))⁻¹ ⬝ _,
|
|
apply ap10 (to_right_inverse (componentwise_iso θ (G d, d)))},
|
|
end
|
|
|
|
end
|
|
-/
|
|
|
|
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
|
|
|
definition adjoint_opposite [constructor] (H : F ⊣ G) : Gᵒᵖᶠ ⊣ Fᵒᵖᶠ :=
|
|
begin
|
|
fconstructor,
|
|
{ rexact opposite_nat_trans (to_counit H)},
|
|
{ rexact opposite_nat_trans (to_unit H)},
|
|
{ rexact to_unit_counit_eq H},
|
|
{ rexact to_counit_unit_eq H}
|
|
end
|
|
|
|
definition adjoint_of_opposite [constructor] (H : Fᵒᵖᶠ ⊣ Gᵒᵖᶠ) : G ⊣ F :=
|
|
begin
|
|
fconstructor,
|
|
{ rexact opposite_rev_nat_trans (to_counit H)},
|
|
{ rexact opposite_rev_nat_trans (to_unit H)},
|
|
{ rexact to_unit_counit_eq H},
|
|
{ rexact to_counit_unit_eq H}
|
|
end
|
|
|
|
end category
|