lean2/doc/demo/kernel.lean
Leonardo de Moura 9bdf076342 doc(demo): add files for making demos
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-01-28 09:59:16 -08:00

628 lines
No EOL
25 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import macros
universe U ≥ 1
definition TypeU := (Type U)
variable Bool : Type
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
builtin true : Bool
builtin false : Bool
definition not (a : Bool) := a → false
notation 40 ¬ _ : not
definition or (a b : Bool) := ¬ a → b
infixr 30 || : or
infixr 30 \/ : or
infixr 30 : or
definition and (a b : Bool) := ¬ (a → ¬ b)
infixr 35 && : and
infixr 35 /\ : and
infixr 35 ∧ : and
definition implies (a b : Bool) := a → b
builtin eq {A : (Type U)} (a b : A) : Bool
infix 50 = : eq
definition neq {A : TypeU} (a b : A) := ¬ (a = b)
infix 50 ≠ : neq
definition iff (a b : Bool) := a = b
infixr 25 <-> : iff
infixr 25 ↔ : iff
-- The Lean parser has special treatment for the constant exists.
-- It allows us to write
-- exists x y : A, P x y and ∃ x y : A, P x y
-- as syntax sugar for
-- exists A (fun x : A, exists A (fun y : A, P x y))
-- That is, it treats the exists as an extra binder such as fun and forall.
-- It also provides an alias (Exists) that should be used when we
-- want to treat exists as a constant.
definition Exists (A : TypeU) (P : A → Bool) := ¬ (∀ x, ¬ (P x))
definition nonempty (A : TypeU) := ∃ x : A, true
-- If we have an element of type A, then A is nonempty
theorem nonempty_intro {A : TypeU} (a : A) : nonempty A
:= assume H : (∀ x, ¬ true), (H a)
theorem em (a : Bool) : a ¬ a
:= assume Hna : ¬ a, Hna
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
axiom refl {A : TypeU} (a : A) : a = a
axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
-- Function extensionality
axiom funext {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
-- Forall extensionality
axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
-- Epsilon (Hilbert's operator)
variable eps {A : TypeU} (H : nonempty A) (P : A → Bool) : A
alias ε : eps
axiom eps_ax {A : TypeU} (H : nonempty A) {P : A → Bool} (a : A) : P a → P (ε H P)
-- Proof irrelevance
axiom proof_irrel {a : Bool} (H1 H2 : a) : H1 = H2
theorem eps_th {A : TypeU} {P : A → Bool} (a : A) : P a → P (ε (nonempty_intro a) P)
:= assume H : P a, @eps_ax A (nonempty_intro a) P a H
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
theorem substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
:= subst H1 H2
-- We will mark not as opaque later
theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H
theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
:= funext (λ x : A, refl (f x))
-- create default rewrite rule set
(* mk_rewrite_rule_set() *)
theorem trivial : true
:= refl true
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
:= subst H2 H1
infixl 100 <| : eqmp
infixl 100 ◂ : eqmp
theorem boolcomplete (a : Bool) : a = true a = false
:= case (λ x, x = true x = false) trivial trivial a
theorem false_elim (a : Bool) (H : false) : a
:= case (λ x, x) trivial H a
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
:= assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha)
theorem not_not_eq (a : Bool) : ¬ ¬ a ↔ a
:= case (λ x, ¬ ¬ x ↔ x) trivial trivial a
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
:= (not_not_eq a) ◂ H
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= assume Hnb : ¬ b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false_elim b (absurd H1 H2)
theorem not_imp_eliml {a b : Bool} (Hnab : ¬ (a → b)) : a
:= not_not_elim
(have ¬ ¬ a :
assume Hna : ¬ a, absurd (assume Ha : a, absurd_elim b Ha Hna)
Hnab)
theorem not_imp_elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b
:= assume Hb : b, absurd (assume Ha : a, Hb)
H
theorem resolve1 {a b : Bool} (H1 : a b) (H2 : ¬ a) : b
:= H1 H2
-- Recall that and is defined as ¬ (a → ¬ b)
theorem and_intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b
:= assume H : a → ¬ b, absurd H2 (H H1)
theorem and_eliml {a b : Bool} (H : a ∧ b) : a
:= not_imp_eliml H
theorem and_elimr {a b : Bool} (H : a ∧ b) : b
:= not_not_elim (not_imp_elimr H)
-- Recall that or is defined as ¬ a → b
theorem or_introl {a : Bool} (H : a) (b : Bool) : a b
:= assume H1 : ¬ a, absurd_elim b H H1
theorem or_intror {b : Bool} (a : Bool) (H : b) : a b
:= assume H1 : ¬ a, H
theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= not_not_elim
(assume H : ¬ c,
absurd (have c : H3 (have b : resolve1 H1 (have ¬ a : (mt (assume Ha : a, H2 Ha) H))))
H)
theorem refute {a : Bool} (H : ¬ a → false) : a
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
theorem symm {A : TypeU} {a b : A} (H : a = b) : b = a
:= subst (refl a) H
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
:= (symm H1) ◂ H2
theorem trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H1 H2
theorem ne_symm {A : TypeU} {a b : A} (H : a ≠ b) : b ≠ a
:= assume H1 : b = a, H (symm H1)
theorem eq_ne_trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst H2 (symm H1)
theorem ne_eq_trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H1 H2
theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (λ Ha : a, H ◂ Ha)
theorem congr1 {A B : TypeU} {f g : A → B} (a : A) (H : f = g) : f a = g a
:= substp (fun h : A → B, f a = h a) (refl (f a)) H
theorem congr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= substp (fun x : A, f a = f x) (refl (f a)) H
theorem congr {A B : TypeU} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
:= subst (congr2 f H2) (congr1 b H1)
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x
theorem exists_elim {A : TypeU} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B
:= refute (λ R : ¬ B,
absurd (take a : A, mt (assume H : P a, H2 a H) R)
H1)
theorem exists_intro {A : TypeU} {P : A → Bool} (a : A) (H : P a) : Exists A P
:= assume H1 : (∀ x : A, ¬ P x),
absurd H (H1 a)
theorem nonempty_elim {A : TypeU} (H1 : nonempty A) {B : Bool} (H2 : A → B) : B
:= obtain (w : A) (Hw : true), from H1,
H2 w
theorem nonempty_ex_intro {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : nonempty A
:= obtain (w : A) (Hw : P w), from H,
exists_intro w trivial
theorem exists_to_eps {A : TypeU} {P : A → Bool} (H : ∃ x, P x) : P (ε (nonempty_ex_intro H) P)
:= obtain (w : A) (Hw : P w), from H,
eps_ax (nonempty_ex_intro H) w Hw
theorem axiom_of_choice {A : TypeU} {B : A → TypeU} {R : ∀ x : A, B x → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x)
:= exists_intro
(λ x, ε (nonempty_ex_intro (H x)) (λ y, R x y)) -- witness for f
(λ x, exists_to_eps (H x)) -- proof that witness satisfies ∀ x, R x (f x)
theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b
:= or_elim (boolcomplete a)
(λ Hat : a = true, or_elim (boolcomplete b)
(λ Hbt : b = true, trans Hat (symm Hbt))
(λ Hbf : b = false, false_elim (a = b) (subst (Hab (eqt_elim Hat)) Hbf)))
(λ Haf : a = false, or_elim (boolcomplete b)
(λ Hbt : b = true, false_elim (a = b) (subst (Hba (eqt_elim Hbt)) Haf))
(λ Hbf : b = false, trans Haf (symm Hbf)))
theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b
:= boolext Hab Hba
theorem iff_eliml {a b : Bool} (H : a ↔ b) : a → b
:= (λ Ha : a, eqmp H Ha)
theorem iff_elimr {a b : Bool} (H : a ↔ b) : b → a
:= (λ Hb : b, eqmpr H Hb)
theorem skolem_th {A : TypeU} {B : A → TypeU} {P : ∀ x : A, B x → Bool} :
(∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x))
:= iff_intro
(λ H : (∀ x, ∃ y, P x y), axiom_of_choice H)
(λ H : (∃ f, (∀ x, P x (f x))),
take x, obtain (fw : ∀ x, B x) (Hw : ∀ x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))
theorem eqt_intro {a : Bool} (H : a) : a = true
:= boolext (assume H1 : a, trivial)
(assume H2 : true, H)
theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2)
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b ↔ false
:= eqf_intro H
theorem eq_id {A : TypeU} (a : A) : (a = a) ↔ true
:= eqt_intro (refl a)
theorem iff_id (a : Bool) : (a ↔ a) ↔ true
:= eqt_intro (refl a)
theorem or_comm (a b : Bool) : (a b) = (b a)
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
theorem or_assoc (a b c : Bool) : (a b) c ↔ a (b c)
:= boolext (assume H : (a b) c,
or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c))
(λ Hb : b, or_intror a (or_introl Hb c)))
(λ Hc : c, or_intror a (or_intror b Hc)))
(assume H : a (b c),
or_elim H (λ Ha : a, (or_introl (or_introl Ha b) c))
(λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c)
(λ Hc : c, or_intror (a b) Hc)))
theorem or_id (a : Bool) : a a ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2))
(assume H, or_introl H a)
theorem or_falsel (a : Bool) : a false ↔ a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2))
(assume H, or_introl H false)
theorem or_falser (a : Bool) : false a ↔ a
:= trans (or_comm false a) (or_falsel a)
theorem or_truel (a : Bool) : true a ↔ true
:= eqt_intro (case (λ x : Bool, true x) trivial trivial a)
theorem or_truer (a : Bool) : a true ↔ true
:= trans (or_comm a true) (or_truel a)
theorem or_tauto (a : Bool) : a ¬ a ↔ true
:= eqt_intro (em a)
theorem and_comm (a b : Bool) : a ∧ b ↔ b ∧ a
:= boolext (assume H, and_intro (and_elimr H) (and_eliml H))
(assume H, and_intro (and_elimr H) (and_eliml H))
theorem and_id (a : Bool) : a ∧ a ↔ a
:= boolext (assume H, and_eliml H)
(assume H, and_intro H H)
theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)
:= boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H)))
(assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H)))
theorem and_truer (a : Bool) : a ∧ true ↔ a
:= boolext (assume H : a ∧ true, and_eliml H)
(assume H : a, and_intro H trivial)
theorem and_truel (a : Bool) : true ∧ a ↔ a
:= trans (and_comm true a) (and_truer a)
theorem and_falsel (a : Bool) : a ∧ false ↔ false
:= boolext (assume H, and_elimr H)
(assume H, false_elim (a ∧ false) H)
theorem and_falser (a : Bool) : false ∧ a ↔ false
:= trans (and_comm false a) (and_falsel a)
theorem and_absurd (a : Bool) : a ∧ ¬ a ↔ false
:= boolext (assume H, absurd (and_eliml H) (and_elimr H))
(assume H, false_elim (a ∧ ¬ a) H)
theorem imp_truer (a : Bool) : (a → true) ↔ true
:= case (λ x, (x → true) ↔ true) trivial trivial a
theorem imp_truel (a : Bool) : (true → a) ↔ a
:= case (λ x, (true → x) ↔ x) trivial trivial a
theorem imp_falser (a : Bool) : (a → false) ↔ ¬ a
:= refl _
theorem imp_falsel (a : Bool) : (false → a) ↔ true
:= case (λ x, (false → x) ↔ true) trivial trivial a
theorem imp_or (a b : Bool) : (a → b) ↔ ¬ a b
:= iff_intro
(assume H : a → b,
(or_elim (em a)
(λ Ha : a, or_intror (¬ a) (H Ha))
(λ Hna : ¬ a, or_introl Hna b)))
(assume H : ¬ a b,
assume Ha : a,
resolve1 H ((symm (not_not_eq a)) ◂ Ha))
theorem not_true : ¬ true ↔ false
:= trivial
theorem not_false : ¬ false ↔ true
:= trivial
theorem not_neq {A : TypeU} (a b : A) : ¬ (a ≠ b) ↔ a = b
:= not_not_eq (a = b)
theorem not_neq_elim {A : TypeU} {a b : A} (H : ¬ (a ≠ b)) : a = b
:= (not_neq a b) ◂ H
theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ¬ b
:= case (λ x, ¬ (x ∧ b) ↔ ¬ x ¬ b)
(case (λ y, ¬ (true ∧ y) ↔ ¬ true ¬ y) trivial trivial b)
(case (λ y, ¬ (false ∧ y) ↔ ¬ false ¬ y) trivial trivial b)
a
theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not_and a b) ◂ H
theorem not_or (a b : Bool) : ¬ (a b) ↔ ¬ a ∧ ¬ b
:= case (λ x, ¬ (x b) ↔ ¬ x ∧ ¬ b)
(case (λ y, ¬ (true y) ↔ ¬ true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false y) ↔ ¬ false ∧ ¬ y) trivial trivial b)
a
theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not_or a b) ◂ H
theorem not_iff (a b : Bool) : ¬ (a ↔ b) ↔ (¬ a ↔ b)
:= case (λ x, ¬ (x ↔ b) ↔ ((¬ x) ↔ b))
(case (λ y, ¬ (true ↔ y) ↔ ((¬ true) ↔ y)) trivial trivial b)
(case (λ y, ¬ (false ↔ y) ↔ ((¬ false) ↔ y)) trivial trivial b)
a
theorem not_iff_elim {a b : Bool} (H : ¬ (a ↔ b)) : (¬ a) ↔ b
:= (not_iff a b) ◂ H
theorem not_implies (a b : Bool) : ¬ (a → b) ↔ a ∧ ¬ b
:= case (λ x, ¬ (x → b) ↔ x ∧ ¬ b)
(case (λ y, ¬ (true → y) ↔ true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false → y) ↔ false ∧ ¬ y) trivial trivial b)
a
theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not_implies a b) ◂ H
theorem not_congr {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
:= congr2 not H
theorem exists_rem {A : TypeU} (H : nonempty A) (p : Bool) : (∃ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∃ x : A, p),
obtain (w : A) (Hw : p), from Hl,
Hw)
(assume Hr : p,
nonempty_elim H (λ w, exists_intro w Hr))
theorem forall_rem {A : TypeU} (H : nonempty A) (p : Bool) : (∀ x : A, p) ↔ p
:= iff_intro
(assume Hl : (∀ x : A, p),
nonempty_elim H (λ w, Hl w))
(assume Hr : p,
take x, Hr)
theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ↔ Q x) : (∃ x : A, P x) ↔ (∃ x : A, Q x)
:= congr2 (Exists A) (funext H)
theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) ↔ (∃ x : A, ¬ P x)
:= calc (¬ ∀ x : A, P x) = ¬ ∀ x : A, ¬ ¬ P x : not_congr (allext (λ x : A, symm (not_not_eq (P x))))
... = ∃ x : A, ¬ P x : refl (∃ x : A, ¬ P x)
theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not_forall A P) ◂ H
theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) ↔ (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x)
... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x)
theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x
:= (not_exists A P) ◂ H
theorem exists_unfold1 {A : TypeU} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a (∃ x : A, x ≠ a ∧ P x)
:= exists_elim H
(λ (w : A) (H1 : P w),
or_elim (em (w = a))
(λ Heq : w = a, or_introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x))
(λ Hne : w ≠ a, or_intror (P a) (exists_intro w (and_intro Hne H1))))
theorem exists_unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x
:= or_elim H
(λ H1 : P a, exists_intro a H1)
(λ H2 : (∃ x : A, x ≠ a ∧ P x),
exists_elim H2
(λ (w : A) (Hw : w ≠ a ∧ P w),
exists_intro w (and_elimr Hw)))
theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) ↔ (P a (∃ x : A, x ≠ a ∧ P x))
:= boolext (assume H : (∃ x : A, P x), exists_unfold1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H)
-- Remark: ordered rewriting + assoc + comm + left_comm sorts a term lexicographically
theorem left_comm {A : TypeU} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x) (assoc : ∀ x y z, R (R x y) z = R x (R y z)) :
∀ x y z, R x (R y z) = R y (R x z)
:= take x y z, calc R x (R y z) = R (R x y) z : symm (assoc x y z)
... = R (R y x) z : { comm x y }
... = R y (R x z) : assoc y x z
theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) ↔ b ∧ (a ∧ c)
:= left_comm and_comm and_assoc a b c
theorem or_left_comm (a b c : Bool) : a (b c) ↔ b (a c)
:= left_comm or_comm or_assoc a b c
-- Congruence theorems for contextual simplification
-- Simplify a → b, by first simplifying a to c using the fact that ¬ b is true, and then
-- b to d using the fact that c is true
theorem imp_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= or_elim (em b)
(λ H_b : b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → b) : { symm (eqt_intro H_b) }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
(λ H_nb : ¬ b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (false → b) : { eqf_intro H_nc }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
-- Simplify a → b, by first simplifying b to d using the fact that a is true, and then
-- b to d using the fact that ¬ d is true.
-- This kind of congruence seems to be useful in very rare cases.
theorem imp_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : (a → b) = (c → d)
:= or_elim (em a)
(λ H_a : a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (a → d) : { H_bd H_a }
... = (a → true) : { eqt_intro H_d }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (c → b) : { H_ac H_nd }
... = (c → d) : { H_bd H_a }))
(λ H_na : ¬ a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (a → d) : { symm (eqf_intro H_na) }
... = (c → d) : { H_ac H_nd }))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= imp_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact that a b is defined as ¬ a → b
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd
theorem or_congrl {a b c d : Bool} (H_bd : ∀ (H_na : ¬ a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : a b ↔ c d
:= imp_congrl H_bd (λ H_nd : ¬ d, congr2 not (H_ac H_nd))
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b ↔ c d
:= or_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b)
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c)))
theorem and_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_d : d), a = c) : a ∧ b ↔ c ∧ d
:= congr2 not (imp_congrl (λ H_a : a, congr2 not (H_bd H_a)) (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
:= and_congrr (λ H, H_ac) H_bd
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) = (p ∀ x, φ x)
:= boolext
(assume H : (∀ x, p φ x),
or_elim (em p)
(λ Hp : p, or_introl Hp (∀ x, φ x))
(λ Hnp : ¬ p, or_intror p (take x,
resolve1 (H x) Hnp)))
(assume H : (p ∀ x, φ x),
take x,
or_elim H
(λ H1 : p, or_introl H1 (φ x))
(λ H2 : (∀ x, φ x), or_intror p (H2 x)))
theorem forall_or_distributel {A : Type} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) = ((∀ x, φ x) p)
:= calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p)
... = (p ∀ x, φ x) : forall_or_distributer p φ
... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x)
theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x)
:= boolext
(assume H : (∀ x, φ x ∧ ψ x),
and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x)))
(assume H : (∀ x, φ x) ∧ (∀ x, ψ x),
take x, and_intro (and_eliml H x) (and_elimr H x))
theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) ↔ p ∧ ∃ x, φ x
:= boolext
(assume H : (∃ x, p ∧ φ x),
obtain (w : A) (Hw : p ∧ φ w), from H,
and_intro (and_eliml Hw) (exists_intro w (and_elimr Hw)))
(assume H : (p ∧ ∃ x, φ x),
obtain (w : A) (Hw : φ w), from (and_elimr H),
exists_intro w (and_intro (and_eliml H) Hw))
theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) ↔ (∃ x, φ x) ∧ p
:= calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p)
... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ
... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x)
theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) ↔ (∃ x, φ x) (∃ x, ψ x)
:= boolext
(assume H : (∃ x, φ x ψ x),
obtain (w : A) (Hw : φ w ψ w), from H,
or_elim Hw
(λ Hw1 : φ w, or_introl (exists_intro w Hw1) (∃ x, ψ x))
(λ Hw2 : ψ w, or_intror (∃ x, φ x) (exists_intro w Hw2)))
(assume H : (∃ x, φ x) (∃ x, ψ x),
or_elim H
(λ H1 : (∃ x, φ x),
obtain (w : A) (Hw : φ w), from H1,
exists_intro w (or_introl Hw (ψ w)))
(λ H2 : (∃ x, ψ x),
obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_intror (φ w) Hw)))
theorem exists_imp_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x → ψ x) ↔ ((∀ x, φ x) → (∃ x, ψ x))
:= calc (∃ x, φ x → ψ x) = (∃ x, ¬ φ x ψ x) : eq_exists_intro (λ x, imp_or (φ x) (ψ x))
... = (∃ x, ¬ φ x) (∃ x, ψ x) : exists_or_distribute _ _
... = ¬ (∀ x, φ x) (∃ x, ψ x) : { symm (not_forall A φ) }
... = (∀ x, φ x) → (∃ x, ψ x) : symm (imp_or _ _)
set_opaque exists true
set_opaque not true
set_opaque or true
set_opaque and true
set_opaque implies true