237 lines
8.6 KiB
Text
237 lines
8.6 KiB
Text
/-
|
||
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Robert Y. Lewis
|
||
|
||
The intermediate value theorem.
|
||
-/
|
||
import .real_limit
|
||
open real analysis set classical
|
||
noncomputable theory
|
||
|
||
private definition inter_sup (a b : ℝ) (f : ℝ → ℝ) := sup {x | x < b ∧ f x < 0}
|
||
|
||
section
|
||
parameters {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0)
|
||
include Hf Ha Hb Hab
|
||
|
||
private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha)
|
||
|
||
private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx)
|
||
|
||
private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem
|
||
|
||
local notation 2 := of_num 1 + of_num 1
|
||
|
||
private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ : ℝ, δ > 0 ∧ x + δ < b ∧ f (x + δ) < 0 :=
|
||
begin
|
||
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Hx,
|
||
cases Hcont with δ Hδ,
|
||
{cases em (x + δ < b) with Haδ Haδ,
|
||
existsi δ / 2,
|
||
split,
|
||
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
|
||
split,
|
||
{apply lt.trans,
|
||
apply add_lt_add_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
exact Haδ},
|
||
{apply and.right Hδ,
|
||
krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
exact div_two_lt_of_pos (and.left Hδ)},
|
||
existsi (b - x) / 2,
|
||
split,
|
||
{apply div_pos_of_pos_of_pos,
|
||
exact sub_pos_of_lt Hxb,
|
||
exact two_pos},
|
||
split,
|
||
{apply add_midpoint Hxb},
|
||
{apply and.right Hδ,
|
||
krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)],
|
||
apply lt_of_lt_of_le,
|
||
apply div_two_lt_of_pos (sub_pos_of_lt Hxb),
|
||
apply sub_left_le_of_le_add,
|
||
apply le_of_not_gt Haδ}}
|
||
end
|
||
|
||
private lemma sup_near_b {δ : ℝ} (Hpos : 0 < δ)
|
||
(Hgeb : inter_sup a b f + δ / 2 ≥ b) : abs (inter_sup a b f - b) < δ :=
|
||
begin
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hsupleb,
|
||
apply lt_add_of_pos_right Hpos,
|
||
rewrite neg_sub,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hgeb,
|
||
apply add_lt_add_left,
|
||
apply div_two_lt_of_pos Hpos
|
||
end
|
||
|
||
private lemma delta_of_lt (Hflt : f (inter_sup a b f) < 0) :
|
||
∃ δ : ℝ, δ > 0 ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0 :=
|
||
if Hlt : inter_sup a b f < b then ex_delta_lt Hflt Hlt else
|
||
begin
|
||
let Heq := eq_of_le_of_ge Hsupleb (le_of_not_gt Hlt),
|
||
apply absurd Hflt,
|
||
apply not_lt_of_ge,
|
||
apply le_of_lt,
|
||
rewrite Heq,
|
||
exact Hb
|
||
end
|
||
|
||
private theorem sup_fn_interval_aux1 : f (inter_sup a b f) ≥ 0 :=
|
||
have ¬ f (inter_sup a b f) < 0, from
|
||
(suppose f (inter_sup a b f) < 0,
|
||
obtain δ Hδ, from delta_of_lt this,
|
||
have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0},
|
||
from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)),
|
||
have ¬ inter_sup a b f < inter_sup a b f + δ,
|
||
from not_lt_of_ge (le_sup this Hmem),
|
||
show false, from this (lt_add_of_pos_right (and.left Hδ))),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval_aux2 : f (inter_sup a b f) ≤ 0 :=
|
||
have ¬ f (inter_sup a b f) > 0, from
|
||
(assume Hfsup : f (inter_sup a b f) > 0,
|
||
obtain δ Hδ, from pos_on_nbhd_of_cts_of_pos Hf Hfsup,
|
||
have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from
|
||
(take x, assume Hxset : x ∈ {x | x < b ∧ f x < 0},
|
||
have ¬ x > inter_sup a b f - δ / 2, from
|
||
(assume Hngt,
|
||
have Habs : abs (x - inter_sup a b f) < δ, begin
|
||
rewrite abs_sub,
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_of_sub_lt,
|
||
apply gt.trans,
|
||
exact Hngt,
|
||
apply sub_lt_sub_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
rewrite neg_sub,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply and.left Hδ,
|
||
apply sub_nonpos_of_le,
|
||
apply le_sup,
|
||
exact Hxset,
|
||
exact Hmem
|
||
end,
|
||
have f x > 0, from and.right Hδ x Habs,
|
||
show false, from (not_lt_of_gt this) (and.right Hxset)),
|
||
le_of_not_gt this),
|
||
have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this,
|
||
show false, from not_le_of_gt
|
||
(sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval : f (inter_sup a b f) = 0 :=
|
||
eq_of_le_of_ge sup_fn_interval_aux2 sup_fn_interval_aux1
|
||
|
||
|
||
private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 :=
|
||
begin
|
||
let Hcont := neg_on_nbhd_of_cts_of_neg Hf Ha,
|
||
cases Hcont with δ Hδ,
|
||
{cases em (a + δ < b) with Haδ Haδ,
|
||
existsi δ / 2,
|
||
split,
|
||
{exact div_pos_of_pos_of_pos (and.left Hδ) two_pos},
|
||
split,
|
||
{apply lt.trans,
|
||
apply add_lt_add_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
exact Haδ},
|
||
{apply and.right Hδ,
|
||
krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
exact div_two_lt_of_pos (and.left Hδ)},
|
||
existsi (b - a) / 2,
|
||
split,
|
||
{apply div_pos_of_pos_of_pos,
|
||
exact sub_pos_of_lt Hab,
|
||
exact two_pos},
|
||
split,
|
||
{apply add_midpoint Hab},
|
||
{apply and.right Hδ,
|
||
krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)],
|
||
apply lt_of_lt_of_le,
|
||
apply div_two_lt_of_pos (sub_pos_of_lt Hab),
|
||
apply sub_left_le_of_le_add,
|
||
apply le_of_not_gt Haδ}}
|
||
end
|
||
|
||
theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
existsi inter_sup a b f,
|
||
split,
|
||
{cases intermediate_value_incr_aux2 with δ Hδ,
|
||
apply lt_of_lt_of_le,
|
||
apply lt_add_of_pos_right,
|
||
exact and.left Hδ,
|
||
apply le_sup,
|
||
exact and.right Hδ,
|
||
intro x Hx,
|
||
apply le_of_lt,
|
||
exact and.left Hx},
|
||
split,
|
||
{cases pos_on_nbhd_of_cts_of_pos Hf Hb with δ Hδ,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply sub_lt_of_pos,
|
||
exact and.left Hδ,
|
||
rotate_right 1,
|
||
apply sup_le,
|
||
exact exists.intro a (and.intro Hab Ha),
|
||
intro x Hx,
|
||
apply le_of_not_gt,
|
||
intro Hxgt,
|
||
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt,
|
||
krewrite [-(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt', abs_sub at Hxgt'],
|
||
note Hxgt'' := and.right Hδ _ Hxgt',
|
||
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
|
||
{exact sup_fn_interval}
|
||
end
|
||
|
||
end
|
||
|
||
theorem intermediate_value_decr_zero {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b)
|
||
(Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
have Ha' : - f a < 0, from neg_neg_of_pos Ha,
|
||
have Hb' : - f b > 0, from neg_pos_of_neg Hb,
|
||
have Hcon : continuous (λ x, - f x), from continuous_neg_of_continuous Hf,
|
||
let Hiv := intermediate_value_incr_zero Hcon Hab Ha' Hb',
|
||
cases Hiv with c Hc,
|
||
existsi c,
|
||
split,
|
||
exact and.left Hc,
|
||
split,
|
||
exact and.left (and.right Hc),
|
||
apply eq_zero_of_neg_eq_zero,
|
||
apply and.right (and.right Hc)
|
||
end
|
||
|
||
theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ}
|
||
(Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||
have Hav' : f a - v < 0, from sub_neg_of_lt Hav,
|
||
have Hbv' : f b - v > 0, from sub_pos_of_lt Hbv,
|
||
have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _,
|
||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv',
|
||
obtain c Hc, from Hiv,
|
||
exists.intro c
|
||
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
|
||
|
||
theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ}
|
||
(Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v :=
|
||
have Hav' : f a - v > 0, from sub_pos_of_lt Hav,
|
||
have Hbv' : f b - v < 0, from sub_neg_of_lt Hbv,
|
||
have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _,
|
||
have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv',
|
||
obtain c Hc, from Hiv,
|
||
exists.intro c
|
||
(and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))
|