lean2/library/theories/group_theory/action.lean

556 lines
22 KiB
Text

/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Haitao Zhang
-/
import algebra.group data .hom .perm .finsubg
namespace group_theory
open finset function
local attribute perm.f [coercion]
private lemma and_left_true {a b : Prop} (Pa : a) : a ∧ b ↔ b :=
by rewrite [iff_true_intro Pa, true_and]
section def
variables {G S : Type} [group G] [fintype S]
definition is_fixed_point (hom : G → perm S) (H : finset G) (a : S) : Prop :=
∀ h, h ∈ H → hom h a = a
variables [decidable_eq S]
definition orbit (hom : G → perm S) (H : finset G) (a : S) : finset S :=
image (move_by a) (image hom H)
definition fixed_points [reducible] (hom : G → perm S) (H : finset G) : finset S :=
{a ∈ univ | orbit hom H a = '{a}}
variable [decidable_eq G] -- required by {x ∈ H |p x} filtering
definition moverset (hom : G → perm S) (H : finset G) (a b : S) : finset G :=
{f ∈ H | hom f a = b}
definition stab (hom : G → perm S) (H : finset G) (a : S) : finset G :=
{f ∈ H | hom f a = a}
end def
section orbit_stabilizer
variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S]
section
variables {hom : G → perm S} {H : finset G} {a : S} [Hom : is_hom_class hom]
include Hom
lemma exists_of_orbit {b : S} : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ hom h a = b :=
assume Pb,
obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Pb,
obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁,
assert Phab : hom h a = b, from calc
hom h a = p a : Ph₂
... = b : Pp₂,
exists.intro h (and.intro Ph₁ Phab)
lemma orbit_of_exists {b : S} : (∃ h, h ∈ H ∧ hom h a = b) → b ∈ orbit hom H a :=
assume Pex, obtain h PinH Phab, from Pex,
mem_image (mem_image_of_mem hom PinH) Phab
lemma is_fixed_point_of_mem_fixed_points :
a ∈ fixed_points hom H → is_fixed_point hom H a :=
assume Pain, take h, assume Phin,
eq_of_mem_singleton
(of_mem_sep Pain ▸ orbit_of_exists (exists.intro h (and.intro Phin rfl)))
lemma mem_fixed_points_of_exists_of_is_fixed_point :
(∃ h, h ∈ H) → is_fixed_point hom H a → a ∈ fixed_points hom H :=
assume Pex Pfp, mem_sep_of_mem !mem_univ
(ext take x, iff.intro
(assume Porb, obtain h Phin Pha, from exists_of_orbit Porb,
by rewrite [mem_singleton_iff, -Pha, Pfp h Phin])
(obtain h Phin, from Pex,
by rewrite mem_singleton_iff;
intro Peq; rewrite Peq;
apply orbit_of_exists;
existsi h; apply and.intro Phin (Pfp h Phin)))
lemma is_fixed_point_iff_mem_fixed_points_of_exists :
(∃ h, h ∈ H) → (a ∈ fixed_points hom H ↔ is_fixed_point hom H a) :=
assume Pex, iff.intro is_fixed_point_of_mem_fixed_points (mem_fixed_points_of_exists_of_is_fixed_point Pex)
lemma is_fixed_point_iff_mem_fixed_points [finsubgH : is_finsubg H] :
a ∈ fixed_points hom H ↔ is_fixed_point hom H a :=
is_fixed_point_iff_mem_fixed_points_of_exists (exists.intro 1 !finsubg_has_one)
lemma is_fixed_point_of_one : is_fixed_point hom ('{1}) a :=
take h, assume Ph, by rewrite [eq_of_mem_singleton Ph, hom_map_one]
lemma fixed_points_of_one : fixed_points hom ('{1}) = univ :=
ext take s, iff.intro (assume Pl, mem_univ s)
(assume Pr, mem_fixed_points_of_exists_of_is_fixed_point
(exists.intro 1 !mem_singleton) is_fixed_point_of_one)
open fintype
lemma card_fixed_points_of_one : card (fixed_points hom ('{1})) = card S :=
by rewrite [fixed_points_of_one]
end
-- these are already specified by stab hom H a
variables {hom : G → perm S} {H : finset G} {a : S}
variable [Hom : is_hom_class hom]
include Hom
lemma perm_f_mul (f g : G): perm.f ((hom f) * (hom g)) a = ((hom f) ∘ (hom g)) a :=
rfl
lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a :=
assume Pgstab,
assert hom g a = a, from of_mem_sep Pgstab, calc
hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom
... = ((hom f) ∘ (hom g)) a : by rewrite perm_f_mul
... = (hom f) a : by unfold compose; rewrite this
lemma stab_subset : stab hom H a ⊆ H :=
begin
apply subset_of_forall, intro f Pfstab, apply mem_of_mem_sep Pfstab
end
lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a :=
assume Pg,
assert hom g a = hom h a, from of_mem_sep Pg, calc
hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : by rewrite (is_hom hom)
... = ((hom h⁻¹) ∘ hom g) a : by rewrite perm_f_mul
... = perm.f ((hom h)⁻¹ * hom h) a : by unfold compose; rewrite [this, perm_f_mul, hom_map_inv hom h]
... = perm.f (1 : perm S) a : by rewrite (mul.left_inv (hom h))
... = a : by esimp
lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) :=
take b1 b2,
assume Pb1, obtain h1 Ph1₁ Ph1₂, from exists_of_orbit Pb1,
assert Ph1b1 : h1 ∈ moverset hom H a b1,
from mem_sep_of_mem Ph1₁ Ph1₂,
assume Psetb2 Pmeq, begin
subst b1,
rewrite Pmeq at Ph1b1,
apply of_mem_sep Ph1b1
end
variable [finsubgH : is_finsubg H]
include finsubgH
lemma subg_stab_of_move {h g : G} :
h ∈ H → g ∈ moverset hom H a (hom h a) → h⁻¹*g ∈ stab hom H a :=
assume Ph Pg,
assert Phinvg : h⁻¹*g ∈ H, from begin
apply finsubg_mul_closed H,
apply finsubg_has_inv H, assumption,
apply mem_of_mem_sep Pg
end,
mem_sep_of_mem Phinvg (reverse_move Pg)
lemma subg_stab_closed : finset_mul_closed_on (stab hom H a) :=
take f g, assume Pfstab, assert Pf : hom f a = a, from of_mem_sep Pfstab,
assume Pgstab,
assert Pfg : hom (f*g) a = a, from calc
hom (f*g) a = (hom f) a : stab_lmul Pgstab
... = a : Pf,
assert PfginH : (f*g) ∈ H,
from finsubg_mul_closed H (mem_of_mem_sep Pfstab) (mem_of_mem_sep Pgstab),
mem_sep_of_mem PfginH Pfg
lemma subg_stab_has_one : 1 ∈ stab hom H a :=
assert P : hom 1 a = a, from calc
hom 1 a = perm.f (1 : perm S) a : {hom_map_one hom}
... = a : rfl,
assert PoneinH : 1 ∈ H, from finsubg_has_one H,
mem_sep_of_mem PoneinH P
lemma subg_stab_has_inv : finset_has_inv (stab hom H a) :=
take f, assume Pfstab, assert Pf : hom f a = a, from of_mem_sep Pfstab,
assert Pfinv : hom f⁻¹ a = a, from calc
hom f⁻¹ a = hom f⁻¹ ((hom f) a) : by rewrite Pf
... = perm.f ((hom f⁻¹) * (hom f)) a : by rewrite perm_f_mul
... = hom (f⁻¹ * f) a : by rewrite (is_hom hom)
... = hom 1 a : by rewrite mul.left_inv
... = perm.f (1 : perm S) a : by rewrite (hom_map_one hom),
assert PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H (mem_of_mem_sep Pfstab),
mem_sep_of_mem PfinvinH Pfinv
definition subg_stab_is_finsubg [instance] :
is_finsubg (stab hom H a) :=
is_finsubg.mk subg_stab_has_one subg_stab_closed subg_stab_has_inv
lemma subg_lcoset_eq_moverset {h : G} :
h ∈ H → fin_lcoset (stab hom H a) h = moverset hom H a (hom h a) :=
assume Ph, ext (take g, iff.intro
(assume Pl, obtain f (Pf₁ : f ∈ stab hom H a) (Pf₂ : h*f = g), from exists_of_mem_image Pl,
assert Pfstab : hom f a = a, from of_mem_sep Pf₁,
assert PginH : g ∈ H, begin
subst Pf₂,
apply finsubg_mul_closed H,
assumption,
apply mem_of_mem_sep Pf₁
end,
assert Pga : hom g a = hom h a, from calc
hom g a = hom (h*f) a : by subst g
... = hom h a : stab_lmul Pf₁,
mem_sep_of_mem PginH Pga)
(assume Pr, begin
rewrite [↑fin_lcoset, mem_image_iff],
existsi h⁻¹*g,
split,
exact subg_stab_of_move Ph Pr,
apply mul_inv_cancel_left
end))
lemma subg_moverset_of_orbit_is_lcoset_of_stab (b : S) :
b ∈ orbit hom H a → ∃ h, h ∈ H ∧ fin_lcoset (stab hom H a) h = moverset hom H a b :=
assume Porb,
obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Porb,
obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁,
assert Phab : hom h a = b, from by subst p; assumption,
exists.intro h (and.intro Ph₁ (Phab ▸ subg_lcoset_eq_moverset Ph₁))
lemma subg_lcoset_of_stab_is_moverset_of_orbit (h : G) :
h ∈ H → ∃ b, b ∈ orbit hom H a ∧ moverset hom H a b = fin_lcoset (stab hom H a) h :=
assume Ph,
have Pha : (hom h a) ∈ orbit hom H a, by
apply mem_image_of_mem; apply mem_image_of_mem; exact Ph,
exists.intro (hom h a) (and.intro Pha (eq.symm (subg_lcoset_eq_moverset Ph)))
lemma subg_moversets_of_orbit_eq_stab_lcosets :
image (moverset hom H a) (orbit hom H a) = fin_lcosets (stab hom H a) H :=
ext (take s, iff.intro
(assume Pl, obtain b Pb₁ Pb₂, from exists_of_mem_image Pl,
obtain h Ph, from subg_moverset_of_orbit_is_lcoset_of_stab b Pb₁, begin
rewrite [↑fin_lcosets, mem_image_eq],
existsi h, subst Pb₂, assumption
end)
(assume Pr, obtain h Ph₁ Ph₂, from exists_of_mem_image Pr,
obtain b Pb, from @subg_lcoset_of_stab_is_moverset_of_orbit G S _ _ _ _ hom H a Hom _ h Ph₁, begin
rewrite [mem_image_eq],
existsi b, subst Ph₂, assumption
end))
open nat
theorem orbit_stabilizer_theorem : card H = card (orbit hom H a) * card (stab hom H a) :=
calc card H = card (fin_lcosets (stab hom H a) H) * card (stab hom H a) : lagrange_theorem stab_subset
... = card (image (moverset hom H a) (orbit hom H a)) * card (stab hom H a) : subg_moversets_of_orbit_eq_stab_lcosets
... = card (orbit hom H a) * card (stab hom H a) : card_image_eq_of_inj_on moverset_inj_on_orbit
end orbit_stabilizer
section orbit_partition
variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S]
variables {hom : G → perm S} [Hom : is_hom_class hom] {H : finset G} [subgH : is_finsubg H]
include Hom subgH
lemma in_orbit_refl {a : S} : a ∈ orbit hom H a :=
mem_image (mem_image (finsubg_has_one H) (hom_map_one hom)) rfl
lemma in_orbit_trans {a b c : S} :
a ∈ orbit hom H b → b ∈ orbit hom H c → a ∈ orbit hom H c :=
assume Painb Pbinc,
obtain h PhinH Phba, from exists_of_orbit Painb,
obtain g PginH Pgcb, from exists_of_orbit Pbinc,
orbit_of_exists (exists.intro (h*g) (and.intro
(finsubg_mul_closed H PhinH PginH)
(calc hom (h*g) c = perm.f ((hom h) * (hom g)) c : is_hom hom
... = ((hom h) ∘ (hom g)) c : by rewrite perm_f_mul
... = (hom h) b : Pgcb
... = a : Phba)))
lemma in_orbit_symm {a b : S} : a ∈ orbit hom H b → b ∈ orbit hom H a :=
assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
assert perm.f (hom h)⁻¹ a = b, by rewrite [-Phba, -perm_f_mul, mul.left_inv],
assert (hom h⁻¹) a = b, by rewrite [hom_map_inv, this],
orbit_of_exists (exists.intro h⁻¹ (and.intro (finsubg_has_inv H PhinH) this))
lemma orbit_is_partition : is_partition (orbit hom H) :=
take a b, propext (iff.intro
(assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb,
ext take c, iff.intro
(assume Pcina, in_orbit_trans Pcina Painb)
(assume Pcinb, obtain g PginH Pgbc, from exists_of_orbit Pcinb,
in_orbit_trans Pcinb (in_orbit_symm Painb)))
(assume Peq, Peq ▸ in_orbit_refl))
variables (hom) (H)
open nat finset.partition fintype
definition orbit_partition : @partition S _ :=
mk univ (orbit hom H) orbit_is_partition
(restriction_imp_union (orbit hom H) orbit_is_partition (λ a Pa, !subset_univ))
definition orbits : finset (finset S) := equiv_classes (orbit_partition hom H)
definition fixed_point_orbits : finset (finset S) :=
{cls ∈ orbits hom H | card cls = 1}
variables {hom} {H}
lemma exists_iff_mem_orbits (orb : finset S) :
orb ∈ orbits hom H ↔ ∃ a : S, orbit hom H a = orb :=
begin
esimp [orbits, equiv_classes, orbit_partition],
rewrite [mem_image_iff],
apply iff.intro,
intro Pl,
cases Pl with a Pa,
rewrite (and_left_true !mem_univ) at Pa,
existsi a, exact Pa,
intro Pr,
cases Pr with a Pa,
rewrite -true_and at Pa, rewrite -(iff_true_intro (mem_univ a)) at Pa,
existsi a, exact Pa
end
lemma exists_of_mem_orbits {orb : finset S} :
orb ∈ orbits hom H → ∃ a : S, orbit hom H a = orb :=
iff.elim_left (exists_iff_mem_orbits orb)
lemma fixed_point_orbits_eq : fixed_point_orbits hom H = image (orbit hom H) (fixed_points hom H) :=
ext take s, iff.intro
(assume Pin,
obtain Psin Ps, from iff.elim_left !mem_sep_iff Pin,
obtain a Pa, from exists_of_mem_orbits Psin,
mem_image
(mem_sep_of_mem !mem_univ (eq.symm
(eq_of_card_eq_of_subset (by rewrite [Pa, Ps])
(subset_of_forall
take x, assume Pxin, eq_of_mem_singleton Pxin ▸ in_orbit_refl))))
Pa)
(assume Pin,
obtain a Pain Porba, from exists_of_mem_image Pin,
mem_sep_of_mem
(begin esimp [orbits, equiv_classes, orbit_partition], rewrite [mem_image_iff],
existsi a, exact and.intro !mem_univ Porba end)
(begin substvars, rewrite [of_mem_sep Pain] end))
lemma orbit_inj_on_fixed_points : set.inj_on (orbit hom H) (ts (fixed_points hom H)) :=
take a₁ a₂, begin
rewrite [-*mem_eq_mem_to_set, ↑fixed_points, *mem_sep_iff],
intro Pa₁ Pa₂,
rewrite [and.right Pa₁, and.right Pa₂],
exact eq_of_singleton_eq
end
lemma card_fixed_point_orbits_eq : card (fixed_point_orbits hom H) = card (fixed_points hom H) :=
by rewrite fixed_point_orbits_eq; apply card_image_eq_of_inj_on orbit_inj_on_fixed_points
lemma orbit_class_equation : card S = Sum (orbits hom H) card :=
class_equation (orbit_partition hom H)
lemma card_fixed_point_orbits : Sum (fixed_point_orbits hom H) card = card (fixed_point_orbits hom H) :=
calc Sum _ _ = Sum (fixed_point_orbits hom H) (λ x, 1) : Sum_ext (take c Pin, of_mem_sep Pin)
... = card (fixed_point_orbits hom H) * 1 : Sum_const_eq_card_mul
... = card (fixed_point_orbits hom H) : mul_one (card (fixed_point_orbits hom H))
local attribute nat.comm_semiring [instance]
lemma orbit_class_equation' : card S = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card :=
calc card S = Sum (orbits hom H) finset.card : orbit_class_equation
... = Sum (fixed_point_orbits hom H) finset.card + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : Sum_binary_union
... = card (fixed_point_orbits hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite -card_fixed_point_orbits
... = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite card_fixed_point_orbits_eq
end orbit_partition
section cayley
variables {G : Type} [group G] [fintype G]
definition action_by_lmul : G → perm G :=
take g, perm.mk (lmul_by g) (lmul_inj g)
variable [decidable_eq G]
lemma action_by_lmul_hom : homomorphic (@action_by_lmul G _ _) :=
take g₁ (g₂ : G), eq.symm (calc
action_by_lmul g₁ * action_by_lmul g₂
= perm.mk ((lmul_by g₁)∘(lmul_by g₂)) _ : rfl
... = perm.mk (lmul_by (g₁*g₂)) _ : by congruence; apply coset.lmul_compose)
lemma action_by_lmul_inj : injective (@action_by_lmul G _ _) :=
take g₁ g₂, assume Peq, perm.no_confusion Peq
(λ Pfeq Pqeq,
have Pappeq : g₁*1 = g₂*1, from congr_fun Pfeq _,
calc g₁ = g₁ * 1 : mul_one
... = g₂ * 1 : Pappeq
... = g₂ : mul_one)
definition action_by_lmul_is_iso [instance] : is_iso_class (@action_by_lmul G _ _) :=
is_iso_class.mk action_by_lmul_hom action_by_lmul_inj
end cayley
section lcosets
open fintype subtype
variables {G : Type} [group G] [fintype G] [decidable_eq G]
variables H : finset G
definition action_on_lcoset : G → perm (lcoset_type univ H) :=
take g, perm.mk (lcoset_lmul (mem_univ g)) lcoset_lmul_inj
private definition lcoset_of (g : G) : lcoset_type univ H :=
tag (fin_lcoset H g) (exists.intro g (and.intro !mem_univ rfl))
variable {H}
lemma action_on_lcoset_eq (g : G) (J : lcoset_type univ H)
: elt_of (action_on_lcoset H g J) = fin_lcoset (elt_of J) g := rfl
lemma action_on_lcoset_hom : homomorphic (action_on_lcoset H) :=
take g₁ g₂, eq_of_feq (funext take S, subtype.eq
(by rewrite [↑action_on_lcoset, ↑lcoset_lmul, -fin_lcoset_compose]))
definition action_on_lcoset_is_hom [instance] : is_hom_class (action_on_lcoset H) :=
is_hom_class.mk action_on_lcoset_hom
variable [finsubgH : is_finsubg H]
include finsubgH
lemma aol_fixed_point_subset_normalizer (J : lcoset_type univ H) :
is_fixed_point (action_on_lcoset H) H J → elt_of J ⊆ normalizer H :=
obtain j Pjin Pj, from exists_of_lcoset_type J,
assume Pfp,
assert PH : ∀ {h}, h ∈ H → fin_lcoset (fin_lcoset H j) h = fin_lcoset H j,
from take h, assume Ph, by rewrite [Pj, -action_on_lcoset_eq, Pfp h Ph],
subset_of_forall take g, begin
rewrite [-Pj, fin_lcoset_same, -inv_inv at {2}],
intro Pg,
rewrite -Pg at PH,
apply finsubg_has_inv,
apply mem_sep_of_mem !mem_univ,
intro h Ph,
assert Phg : fin_lcoset (fin_lcoset H g) h = fin_lcoset H g, exact PH Ph,
revert Phg,
rewrite [↑conj_by, inv_inv, mul.assoc, fin_lcoset_compose, -fin_lcoset_same, ↑fin_lcoset, mem_image_iff, ↑lmul_by],
intro Pex, cases Pex with k Pand, cases Pand with Pkin Pk,
rewrite [-Pk, inv_mul_cancel_left], exact Pkin
end
lemma aol_fixed_point_of_mem_normalizer {g : G} :
g ∈ normalizer H → is_fixed_point (action_on_lcoset H) H (lcoset_of H g) :=
assume Pgin, take h, assume Phin, subtype.eq
(by rewrite [action_on_lcoset_eq, ↑lcoset_of, lrcoset_same_of_mem_normalizer Pgin, fin_lrcoset_comm, finsubg_lcoset_id Phin])
lemma aol_fixed_points_eq_normalizer :
Union (fixed_points (action_on_lcoset H) H) elt_of = normalizer H :=
ext take g, begin
rewrite [mem_Union_iff],
apply iff.intro,
intro Pl,
cases Pl with L PL, revert PL,
rewrite [is_fixed_point_iff_mem_fixed_points],
intro Pg,
apply mem_of_subset_of_mem,
apply aol_fixed_point_subset_normalizer L, exact and.left Pg,
exact and.right Pg,
intro Pr,
existsi (lcoset_of H g), apply and.intro,
rewrite [is_fixed_point_iff_mem_fixed_points],
exact aol_fixed_point_of_mem_normalizer Pr,
exact fin_mem_lcoset g
end
open nat
lemma card_aol_fixed_points_eq_card_cosets :
card (fixed_points (action_on_lcoset H) H) = card (lcoset_type (normalizer H) H) :=
have Peq : card (fixed_points (action_on_lcoset H) H) * card H = card (lcoset_type (normalizer H) H) * card H, from calc
card _ * card H = card (Union (fixed_points (action_on_lcoset H) H) elt_of) : card_Union_lcosets
... = card (normalizer H) : aol_fixed_points_eq_normalizer
... = card (lcoset_type (normalizer H) H) * card H : lagrange_theorem' subset_normalizer,
eq_of_mul_eq_mul_right (card_pos_of_mem !finsubg_has_one) Peq
end lcosets
section perm_fin
open fin nat eq.ops
variable {n : nat}
definition lift_perm (p : perm (fin n)) : perm (fin (succ n)) :=
perm.mk (lift_fun p) (lift_fun_of_inj (perm.inj p))
definition lower_perm (p : perm (fin (succ n))) (P : p maxi = maxi) : perm (fin n) :=
perm.mk (lower_inj p (perm.inj p) P)
(take i j, begin
rewrite [-eq_iff_veq, *lower_inj_apply, eq_iff_veq],
apply injective_compose (perm.inj p) lift_succ_inj
end)
lemma lift_lower_eq : ∀ {p : perm (fin (succ n))} (P : p maxi = maxi),
lift_perm (lower_perm p P) = p
| (perm.mk pf Pinj) := assume Pmax, begin
rewrite [↑lift_perm], congruence,
apply funext, intro i,
assert Pfmax : pf maxi = maxi, apply Pmax,
assert Pd : decidable (i = maxi),
exact _,
cases Pd with Pe Pne,
rewrite [Pe, Pfmax], apply lift_fun_max,
rewrite [lift_fun_of_ne_max Pne, ↑lower_perm, ↑lift_succ],
rewrite [-eq_iff_veq, -val_lift, lower_inj_apply, eq_iff_veq],
congruence, rewrite [-eq_iff_veq]
end
lemma lift_perm_inj : injective (@lift_perm n) :=
take p1 p2, assume Peq, eq_of_feq (lift_fun_inj (feq_of_eq Peq))
lemma lift_perm_inj_on_univ : set.inj_on (@lift_perm n) (ts univ) :=
eq.symm to_set_univ ▸ iff.elim_left set.injective_iff_inj_on_univ lift_perm_inj
lemma lift_to_stab : image (@lift_perm n) univ = stab id univ maxi :=
ext (take (pp : perm (fin (succ n))), iff.intro
(assume Pimg, obtain p P_ Pp, from exists_of_mem_image Pimg,
assert Ppp : pp maxi = maxi, from calc
pp maxi = lift_perm p maxi : {eq.symm Pp}
... = lift_fun p maxi : rfl
... = maxi : lift_fun_max,
mem_sep_of_mem !mem_univ Ppp)
(assume Pstab,
assert Ppp : pp maxi = maxi, from of_mem_sep Pstab,
mem_image !mem_univ (lift_lower_eq Ppp)))
definition move_from_max_to (i : fin (succ n)) : perm (fin (succ n)) :=
perm.mk (madd (i - maxi)) madd_inj
lemma orbit_max : orbit (@id (perm (fin (succ n)))) univ maxi = univ :=
ext (take i, iff.intro
(assume P, !mem_univ)
(assume P, begin
apply mem_image,
apply mem_image,
apply mem_univ (move_from_max_to i), apply rfl,
apply sub_add_cancel
end))
lemma card_orbit_max : card (orbit (@id (perm (fin (succ n)))) univ maxi) = succ n :=
calc card (orbit (@id (perm (fin (succ n)))) univ maxi) = card univ : by rewrite orbit_max
... = succ n : card_fin (succ n)
open fintype
lemma card_lift_to_stab : card (stab (@id (perm (fin (succ n)))) univ maxi) = card (perm (fin n)) :=
calc finset.card (stab (@id (perm (fin (succ n)))) univ maxi)
= finset.card (image (@lift_perm n) univ) : by rewrite lift_to_stab
... = card univ : by rewrite (card_image_eq_of_inj_on lift_perm_inj_on_univ)
lemma card_perm_step : card (perm (fin (succ n))) = (succ n) * card (perm (fin n)) :=
calc card (perm (fin (succ n)))
= card (orbit id univ maxi) * card (stab id univ maxi) : orbit_stabilizer_theorem
... = (succ n) * card (stab id univ maxi) : {card_orbit_max}
... = (succ n) * card (perm (fin n)) : by rewrite -card_lift_to_stab
end perm_fin
end group_theory