661 lines
22 KiB
Text
661 lines
22 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura
|
||
-/
|
||
import data.nat data.list data.equiv
|
||
open nat function option
|
||
|
||
definition stream (A : Type) := nat → A
|
||
|
||
namespace stream
|
||
variables {A B C : Type}
|
||
|
||
definition cons (a : A) (s : stream A) : stream A :=
|
||
λ i,
|
||
match i with
|
||
| 0 := a
|
||
| succ n := s n
|
||
end
|
||
|
||
notation h :: t := cons h t
|
||
|
||
definition head [reducible] (s : stream A) : A :=
|
||
s 0
|
||
|
||
definition tail (s : stream A) : stream A :=
|
||
λ i, s (i+1)
|
||
|
||
definition drop (n : nat) (s : stream A) : stream A :=
|
||
λ i, s (i+n)
|
||
|
||
definition nth [reducible] (n : nat) (s : stream A) : A :=
|
||
s n
|
||
|
||
protected theorem eta (s : stream A) : head s :: tail s = s :=
|
||
funext (λ i, begin cases i, repeat reflexivity end)
|
||
|
||
theorem nth_zero_cons (a : A) (s : stream A) : nth 0 (a :: s) = a :=
|
||
rfl
|
||
|
||
theorem head_cons (a : A) (s : stream A) : head (a :: s) = a :=
|
||
rfl
|
||
|
||
theorem tail_cons (a : A) (s : stream A) : tail (a :: s) = s :=
|
||
rfl
|
||
|
||
theorem tail_drop (n : nat) (s : stream A) : tail (drop n s) = drop n (tail s) :=
|
||
funext (λ i, begin esimp [tail, drop], congruence, rewrite add.right_comm end)
|
||
|
||
theorem nth_drop (n m : nat) (s : stream A) : nth n (drop m s) = nth (n+m) s :=
|
||
rfl
|
||
|
||
theorem tail_eq_drop (s : stream A) : tail s = drop 1 s :=
|
||
rfl
|
||
|
||
theorem drop_drop (n m : nat) (s : stream A) : drop n (drop m s) = drop (n+m) s :=
|
||
funext (λ i, begin esimp [drop], rewrite add.assoc end)
|
||
|
||
theorem nth_succ (n : nat) (s : stream A) : nth (succ n) s = nth n (tail s) :=
|
||
rfl
|
||
|
||
theorem drop_succ (n : nat) (s : stream A) : drop (succ n) s = drop n (tail s) :=
|
||
rfl
|
||
|
||
protected theorem ext {s₁ s₂ : stream A} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ :=
|
||
assume h, funext h
|
||
|
||
definition all (p : A → Prop) (s : stream A) := ∀ n, p (nth n s)
|
||
|
||
definition any (p : A → Prop) (s : stream A) := ∃ n, p (nth n s)
|
||
|
||
theorem all_def (p : A → Prop) (s : stream A) : all p s = ∀ n, p (nth n s) :=
|
||
rfl
|
||
|
||
theorem any_def (p : A → Prop) (s : stream A) : any p s = ∃ n, p (nth n s) :=
|
||
rfl
|
||
|
||
definition mem (a : A) (s : stream A) := any (λ b, a = b) s
|
||
|
||
notation e ∈ s := mem e s
|
||
|
||
theorem mem_cons (a : A) (s : stream A) : a ∈ (a::s) :=
|
||
exists.intro 0 rfl
|
||
|
||
theorem mem_cons_of_mem {a : A} {s : stream A} (b : A) : a ∈ s → a ∈ b :: s :=
|
||
assume ains, obtain n (h : a = nth n s), from ains,
|
||
exists.intro (succ n) (by rewrite [nth_succ, tail_cons, h])
|
||
|
||
theorem eq_or_mem_of_mem_cons {a b : A} {s : stream A} : a ∈ b::s → a = b ∨ a ∈ s :=
|
||
assume ainbs, obtain n (h : a = nth n (b::s)), from ainbs,
|
||
begin
|
||
cases n with n',
|
||
{left, exact h},
|
||
{right, rewrite [nth_succ at h, tail_cons at h], existsi n', exact h}
|
||
end
|
||
|
||
theorem mem_of_nth_eq {n : nat} {s : stream A} {a : A} : a = nth n s → a ∈ s :=
|
||
assume h, exists.intro n h
|
||
|
||
section map
|
||
variable (f : A → B)
|
||
|
||
definition map (s : stream A) : stream B :=
|
||
λ n, f (nth n s)
|
||
|
||
theorem drop_map (n : nat) (s : stream A) : drop n (map f s) = map f (drop n s) :=
|
||
stream.ext (λ i, rfl)
|
||
|
||
theorem nth_map (n : nat) (s : stream A) : nth n (map f s) = f (nth n s) :=
|
||
rfl
|
||
|
||
theorem tail_map (s : stream A) : tail (map f s) = map f (tail s) :=
|
||
begin rewrite tail_eq_drop end
|
||
|
||
theorem head_map (s : stream A) : head (map f s) = f (head s) :=
|
||
rfl
|
||
|
||
theorem map_eq (s : stream A) : map f s = f (head s) :: map f (tail s) :=
|
||
by rewrite [-stream.eta, tail_map, head_map]
|
||
|
||
theorem map_cons (a : A) (s : stream A) : map f (a :: s) = f a :: map f s :=
|
||
by rewrite [-stream.eta, map_eq]
|
||
|
||
theorem map_id (s : stream A) : map id s = s :=
|
||
rfl
|
||
|
||
theorem map_map (g : B → C) (f : A → B) (s : stream A) : map g (map f s) = map (g ∘ f) s :=
|
||
rfl
|
||
|
||
theorem mem_map {a : A} {s : stream A} : a ∈ s → f a ∈ map f s :=
|
||
assume ains, obtain n (h : a = nth n s), from ains,
|
||
exists.intro n (by rewrite [nth_map, h])
|
||
end map
|
||
|
||
section zip
|
||
variable (f : A → B → C)
|
||
|
||
definition zip (s₁ : stream A) (s₂ : stream B) : stream C :=
|
||
λ n, f (nth n s₁) (nth n s₂)
|
||
|
||
theorem drop_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : drop n (zip f s₁ s₂) = zip f (drop n s₁) (drop n s₂) :=
|
||
stream.ext (λ i, rfl)
|
||
|
||
theorem nth_zip (n : nat) (s₁ : stream A) (s₂ : stream B) : nth n (zip f s₁ s₂) = f (nth n s₁) (nth n s₂) :=
|
||
rfl
|
||
|
||
theorem head_zip (s₁ : stream A) (s₂ : stream B) : head (zip f s₁ s₂) = f (head s₁) (head s₂) :=
|
||
rfl
|
||
|
||
theorem tail_zip (s₁ : stream A) (s₂ : stream B) : tail (zip f s₁ s₂) = zip f (tail s₁) (tail s₂) :=
|
||
rfl
|
||
|
||
theorem zip_eq (s₁ : stream A) (s₂ : stream B) : zip f s₁ s₂ = f (head s₁) (head s₂) :: zip f (tail s₁) (tail s₂) :=
|
||
by rewrite [-stream.eta]
|
||
end zip
|
||
|
||
definition const (a : A) : stream A :=
|
||
λ n, a
|
||
|
||
theorem mem_const (a : A) : a ∈ const a :=
|
||
exists.intro 0 rfl
|
||
|
||
theorem const_eq (a : A) : const a = a :: const a :=
|
||
begin
|
||
apply stream.ext, intro n,
|
||
cases n, repeat reflexivity
|
||
end
|
||
|
||
theorem tail_const (a : A) : tail (const a) = const a :=
|
||
by rewrite [const_eq at {1}]
|
||
|
||
theorem map_const (f : A → B) (a : A) : map f (const a) = const (f a) :=
|
||
rfl
|
||
|
||
theorem nth_const (n : nat) (a : A) : nth n (const a) = a :=
|
||
rfl
|
||
|
||
theorem drop_const (n : nat) (a : A) : drop n (const a) = const a :=
|
||
stream.ext (λ i, rfl)
|
||
|
||
definition iterate (f : A → A) (a : A) : stream A :=
|
||
λ n, nat.rec_on n a (λ n r, f r)
|
||
|
||
theorem head_iterate (f : A → A) (a : A) : head (iterate f a) = a :=
|
||
rfl
|
||
|
||
theorem tail_iterate (f : A → A) (a : A) : tail (iterate f a) = iterate f (f a) :=
|
||
begin
|
||
apply funext, intro n,
|
||
induction n with n' IH,
|
||
{reflexivity},
|
||
{esimp [tail, iterate] at *,
|
||
rewrite add_one at *,
|
||
esimp at *, rewrite IH}
|
||
end
|
||
|
||
theorem iterate_eq (f : A → A) (a : A) : iterate f a = a :: iterate f (f a) :=
|
||
begin
|
||
rewrite [-stream.eta], congruence, exact !tail_iterate
|
||
end
|
||
|
||
theorem nth_zero_iterate (f : A → A) (a : A) : nth 0 (iterate f a) = a :=
|
||
rfl
|
||
|
||
theorem nth_succ_iterate (n : nat) (f : A → A) (a : A) : nth (succ n) (iterate f a) = nth n (iterate f (f a)) :=
|
||
by rewrite [nth_succ, tail_iterate]
|
||
|
||
section bisim
|
||
variable (R : stream A → stream A → Prop)
|
||
local infix ~ := R
|
||
|
||
definition is_bisimulation := ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂
|
||
|
||
lemma nth_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ drop (n+1) s₁ ~ drop (n+1) s₂
|
||
| s₁ s₂ 0 h := bisim h
|
||
| s₁ s₂ (n+1) h :=
|
||
obtain h₁ (trel : tail s₁ ~ tail s₂), from bisim h,
|
||
nth_of_bisim n trel
|
||
|
||
-- If two streams are bisimilar, then they are equal
|
||
theorem eq_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ :=
|
||
λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim R bisim n r))
|
||
end bisim
|
||
|
||
theorem bisim_simple (s₁ s₂ : stream A) : head s₁ = head s₂ → s₁ = tail s₁ → s₂ = tail s₂ → s₁ = s₂ :=
|
||
assume hh ht₁ ht₂, eq_of_bisim
|
||
(λ s₁ s₂, head s₁ = head s₂ ∧ s₁ = tail s₁ ∧ s₂ = tail s₂)
|
||
(λ s₁ s₂ h,
|
||
obtain h₁ h₂ h₃, from h,
|
||
begin
|
||
constructor, exact h₁, rewrite [-h₂, -h₃], exact h
|
||
end)
|
||
(and.intro hh (and.intro ht₁ ht₂))
|
||
|
||
-- AKA coinduction freeze
|
||
theorem coinduction.{l} {A : Type.{l}} {s₁ s₂ : stream A} :
|
||
head s₁ = head s₂ → (∀ (B : Type.{l}) (fr : stream A → B), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) → s₁ = s₂ :=
|
||
assume hh ht,
|
||
eq_of_bisim
|
||
(λ s₁ s₂, head s₁ = head s₂ ∧ ∀ (B : Type) (fr : stream A → B), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂))
|
||
(λ s₁ s₂ h,
|
||
have h₁ : head s₁ = head s₂, from and.elim_left h,
|
||
have h₂ : head (tail s₁) = head (tail s₂), from and.elim_right h A (@head A) h₁,
|
||
have h₃ : ∀ (B : Type) (fr : stream A → B), fr (tail s₁) = fr (tail s₂) → fr (tail (tail s₁)) = fr (tail (tail s₂)), from
|
||
λ B fr, and.elim_right h B (λ s, fr (tail s)),
|
||
and.intro h₁ (and.intro h₂ h₃))
|
||
(and.intro hh ht)
|
||
|
||
theorem iterate_id (a : A) : iterate id a = const a :=
|
||
coinduction
|
||
rfl
|
||
(λ B fr ch, by rewrite [tail_iterate, tail_const]; exact ch)
|
||
|
||
|
||
local attribute stream [reducible]
|
||
theorem map_iterate (f : A → A) (a : A) : iterate f (f a) = map f (iterate f a) :=
|
||
begin
|
||
apply funext, intro n,
|
||
induction n with n' IH,
|
||
{reflexivity},
|
||
{ esimp [map, iterate, nth] at *,
|
||
rewrite IH }
|
||
end
|
||
|
||
section corec
|
||
definition corec (f : A → B) (g : A → A) : A → stream B :=
|
||
λ a, map f (iterate g a)
|
||
|
||
theorem corec_def (f : A → B) (g : A → A) (a : A) : corec f g a = map f (iterate g a) :=
|
||
rfl
|
||
|
||
theorem corec_eq (f : A → B) (g : A → A) (a : A) : corec f g a = f a :: corec f g (g a) :=
|
||
by rewrite [corec_def, map_eq, head_iterate, tail_iterate]
|
||
|
||
theorem corec_id_id_eq_const (a : A) : corec id id a = const a :=
|
||
by rewrite [corec_def, map_id, iterate_id]
|
||
|
||
theorem corec_id_f_eq_iterate (f : A → A) (a : A) : corec id f a = iterate f a :=
|
||
rfl
|
||
end corec
|
||
|
||
-- corec is also known as unfold
|
||
definition unfolds (g : A → B) (f : A → A) (a : A) : stream B :=
|
||
corec g f a
|
||
|
||
theorem unfolds_eq (g : A → B) (f : A → A) (a : A) : unfolds g f a = g a :: unfolds g f (f a) :=
|
||
by esimp [ unfolds ]; rewrite [corec_eq]
|
||
|
||
theorem nth_unfolds_head_tail : ∀ (n : nat) (s : stream A), nth n (unfolds head tail s) = nth n s :=
|
||
begin
|
||
intro n, induction n with n' ih,
|
||
{intro s, reflexivity},
|
||
{intro s, rewrite [*nth_succ, unfolds_eq, tail_cons, ih]}
|
||
end
|
||
|
||
theorem unfolds_head_eq : ∀ (s : stream A), unfolds head tail s = s :=
|
||
λ s, stream.ext (λ n, nth_unfolds_head_tail n s)
|
||
|
||
definition interleave (s₁ s₂ : stream A) : stream A :=
|
||
corec
|
||
(λ p, obtain s₁ s₂, from p, head s₁)
|
||
(λ p, obtain s₁ s₂, from p, (s₂, tail s₁))
|
||
(s₁, s₂)
|
||
|
||
infix `⋈`:65 := interleave
|
||
|
||
theorem interleave_eq (s₁ s₂ : stream A) : s₁ ⋈ s₂ = head s₁ :: head s₂ :: (tail s₁ ⋈ tail s₂) :=
|
||
begin
|
||
esimp [interleave], rewrite corec_eq, esimp, congruence, rewrite corec_eq
|
||
end
|
||
|
||
theorem tail_interleave (s₁ s₂ : stream A) : tail (s₁ ⋈ s₂) = s₂ ⋈ (tail s₁) :=
|
||
by esimp [interleave]; rewrite corec_eq
|
||
|
||
theorem interleave_tail_tail (s₁ s₂ : stream A) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) :=
|
||
by rewrite [interleave_eq s₁ s₂]
|
||
|
||
theorem nth_interleave_left : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n) (s₁ ⋈ s₂) = nth n s₁
|
||
| 0 s₁ s₂ := rfl
|
||
| (succ n) s₁ s₂ :=
|
||
begin
|
||
change nth (succ (succ (2*n))) (s₁ ⋈ s₂) = nth (succ n) s₁,
|
||
rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_left]
|
||
end
|
||
|
||
theorem nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream A), nth (2*n+1) (s₁ ⋈ s₂) = nth n s₂
|
||
| 0 s₁ s₂ := rfl
|
||
| (succ n) s₁ s₂ :=
|
||
begin
|
||
change nth (succ (succ (2*n+1))) (s₁ ⋈ s₂) = nth (succ n) s₂,
|
||
rewrite [*nth_succ, interleave_eq, *tail_cons, nth_interleave_right]
|
||
end
|
||
|
||
theorem mem_interleave_left {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ :=
|
||
assume ains₁, obtain n h, from ains₁,
|
||
exists.intro (2*n) (by rewrite [h, nth_interleave_left])
|
||
|
||
theorem mem_interleave_right {a : A} {s₁ : stream A} (s₂ : stream A) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ :=
|
||
assume ains₂, obtain n h, from ains₂,
|
||
exists.intro (2*n+1) (by rewrite [h, nth_interleave_right])
|
||
|
||
definition even (s : stream A) : stream A :=
|
||
corec
|
||
(λ s, head s)
|
||
(λ s, tail (tail s))
|
||
s
|
||
|
||
definition odd (s : stream A) : stream A :=
|
||
even (tail s)
|
||
|
||
theorem odd_eq (s : stream A) : odd s = even (tail s) :=
|
||
rfl
|
||
|
||
theorem head_even (s : stream A) : head (even s) = head s :=
|
||
rfl
|
||
|
||
theorem tail_even (s : stream A) : tail (even s) = even (tail (tail s)) :=
|
||
by esimp [even]; rewrite corec_eq
|
||
|
||
theorem even_cons_cons (a₁ a₂ : A) (s : stream A) : even (a₁ :: a₂ :: s) = a₁ :: even s :=
|
||
by esimp [even]; rewrite corec_eq
|
||
|
||
theorem even_tail (s : stream A) : even (tail s) = odd s :=
|
||
rfl
|
||
|
||
theorem even_interleave (s₁ s₂ : stream A) : even (s₁ ⋈ s₂) = s₁ :=
|
||
eq_of_bisim
|
||
(λ s₁' s₁, ∃ s₂, s₁' = even (s₁ ⋈ s₂))
|
||
(λ s₁' s₁ h,
|
||
obtain s₂ (h₁ : s₁' = even (s₁ ⋈ s₂)), from h,
|
||
begin
|
||
rewrite h₁,
|
||
constructor,
|
||
{reflexivity},
|
||
{existsi (tail s₂),
|
||
rewrite [interleave_eq, even_cons_cons, tail_cons]}
|
||
end)
|
||
(exists.intro s₂ rfl)
|
||
|
||
theorem interleave_even_odd (s₁ : stream A) : even s₁ ⋈ odd s₁ = s₁ :=
|
||
eq_of_bisim
|
||
(λ s' s, s' = even s ⋈ odd s)
|
||
(λ s' s (h : s' = even s ⋈ odd s),
|
||
begin
|
||
rewrite h, constructor,
|
||
{reflexivity},
|
||
{esimp, rewrite [*odd_eq, tail_interleave, tail_even]}
|
||
end)
|
||
rfl
|
||
|
||
theorem nth_even : ∀ (n : nat) (s : stream A), nth n (even s) = nth (2*n) s
|
||
| 0 s := rfl
|
||
| (succ n) s :=
|
||
begin
|
||
change nth (succ n) (even s) = nth (succ (succ (2 * n))) s,
|
||
rewrite [+nth_succ, tail_even, nth_even]
|
||
end
|
||
|
||
theorem nth_odd : ∀ (n : nat) (s : stream A), nth n (odd s) = nth (2*n + 1) s :=
|
||
λ n s, by rewrite [odd_eq, nth_even]
|
||
|
||
theorem mem_of_mem_even (a : A) (s : stream A) : a ∈ even s → a ∈ s :=
|
||
assume aines, obtain n h, from aines,
|
||
exists.intro (2*n) (by rewrite [h, nth_even])
|
||
|
||
theorem mem_of_mem_odd (a : A) (s : stream A) : a ∈ odd s → a ∈ s :=
|
||
assume ainos, obtain n h, from ainos,
|
||
exists.intro (2*n+1) (by rewrite [h, nth_odd])
|
||
|
||
open list
|
||
definition append : list A → stream A → stream A
|
||
| [] s := s
|
||
| (a::l) s := a :: append l s
|
||
|
||
theorem nil_append (s : stream A) : append [] s = s :=
|
||
rfl
|
||
|
||
theorem cons_append (a : A) (l : list A) (s : stream A) : append (a::l) s = a :: append l s :=
|
||
rfl
|
||
|
||
infix ++ := append
|
||
-- the following local notation is used just to make the following theorem clear
|
||
local infix `++ₛ`:65 := append
|
||
|
||
theorem append_append : ∀ (l₁ l₂ : list A) (s : stream A), (l₁ ++ l₂) ++ₛ s = l₁ ++ (l₂ ++ₛ s)
|
||
| [] l₂ s := rfl
|
||
| (a::l₁) l₂ s := by rewrite [list.append_cons, *cons_append, append_append]
|
||
|
||
theorem map_append (f : A → B) : ∀ (l : list A) (s : stream A), map f (l ++ s) = list.map f l ++ map f s
|
||
| [] s := rfl
|
||
| (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append]
|
||
|
||
theorem drop_append : ∀ (l : list A) (s : stream A), drop (length l) (l ++ s) = s
|
||
| [] s := by esimp
|
||
| (a::l) s := by rewrite [length_cons, add_one, drop_succ, cons_append, tail_cons, drop_append]
|
||
|
||
theorem append_head_tail (s : stream A) : [head s] ++ tail s = s :=
|
||
by rewrite [cons_append, nil_append, stream.eta]
|
||
|
||
theorem mem_append_right : ∀ {a : A} (l : list A) {s : stream A}, a ∈ s → a ∈ l ++ s
|
||
| a [] s h := h
|
||
| a (b::l) s h :=
|
||
have ih : a ∈ l ++ s, from mem_append_right l h,
|
||
!mem_cons_of_mem ih
|
||
|
||
theorem mem_append_left : ∀ {a : A} {l : list A} (s : stream A), a ∈ l → a ∈ l ++ s
|
||
| a [] s h := absurd h !not_mem_nil
|
||
| a (b::l) s h :=
|
||
or.elim (list.eq_or_mem_of_mem_cons h)
|
||
(λ (aeqb : a = b), exists.intro 0 aeqb)
|
||
(λ (ainl : a ∈ l), mem_cons_of_mem b (mem_append_left s ainl))
|
||
|
||
definition approx : nat → stream A → list A
|
||
| 0 s := []
|
||
| (n+1) s := head s :: approx n (tail s)
|
||
|
||
theorem approx_zero (s : stream A) : approx 0 s = [] :=
|
||
rfl
|
||
|
||
theorem approx_succ (n : nat) (s : stream A) : approx (succ n) s = head s :: approx n (tail s) :=
|
||
rfl
|
||
|
||
theorem nth_approx : ∀ (n : nat) (s : stream A), list.nth (approx (succ n) s) n = some (nth n s)
|
||
| 0 s := rfl
|
||
| (n+1) s := begin rewrite [approx_succ, add_one, list.nth_succ, nth_approx] end
|
||
|
||
theorem append_approx_drop : ∀ (n : nat) (s : stream A), append (approx n s) (drop n s) = s :=
|
||
begin
|
||
intro n,
|
||
induction n with n' ih,
|
||
{intro s, reflexivity},
|
||
{intro s, rewrite [approx_succ, drop_succ, cons_append, ih (tail s), stream.eta]}
|
||
end
|
||
|
||
-- Take lemma reduces a proof of equality of infinite streams to an
|
||
-- induction over all their finite approximations.
|
||
theorem take_lemma (s₁ s₂ : stream A) : (∀ (n : nat), approx n s₁ = approx n s₂) → s₁ = s₂ :=
|
||
begin
|
||
intro h, apply stream.ext, intro n,
|
||
induction n with n ih,
|
||
{injection (h 1) with aux, exact aux},
|
||
{have h₁ : some (nth (succ n) s₁) = some (nth (succ n) s₂), by rewrite [-*nth_approx, h (succ (succ n))],
|
||
injection h₁, assumption}
|
||
end
|
||
|
||
-- auxiliary definition for cycle corecursive definition
|
||
private definition cycle_f : A × list A × A × list A → A
|
||
| (v, _, _, _) := v
|
||
|
||
-- auxiliary definition for cycle corecursive definition
|
||
private definition cycle_g : A × list A × A × list A → A × list A × A × list A
|
||
| (v₁, [], v₀, l₀) := (v₀, l₀, v₀, l₀)
|
||
| (v₁, v₂::l₂, v₀, l₀) := (v₂, l₂, v₀, l₀)
|
||
|
||
private lemma cycle_g_cons (a : A) (a₁ : A) (l₁ : list A) (a₀ : A) (l₀ : list A) :
|
||
cycle_g (a, a₁::l₁, a₀, l₀) = (a₁, l₁, a₀, l₀) :=
|
||
rfl
|
||
|
||
definition cycle : Π (l : list A), l ≠ nil → stream A
|
||
| [] h := absurd rfl h
|
||
| (a::l) h := corec cycle_f cycle_g (a, l, a, l)
|
||
|
||
theorem cycle_eq : ∀ (l : list A) (h : l ≠ nil), cycle l h = l ++ cycle l h
|
||
| [] h := absurd rfl h
|
||
| (a::l) h :=
|
||
have gen : ∀ l' a', corec cycle_f cycle_g (a', l', a, l) = (a' :: l') ++ₛ corec cycle_f cycle_g (a, l, a, l),
|
||
begin
|
||
intro l',
|
||
induction l' with a₁ l₁ ih,
|
||
{intro a', rewrite [corec_eq]},
|
||
{intro a', rewrite [corec_eq, cycle_g_cons, ih a₁]}
|
||
end,
|
||
gen l a
|
||
|
||
theorem mem_cycle {a : A} {l : list A} : ∀ (h : l ≠ []), a ∈ l → a ∈ cycle l h :=
|
||
assume h ainl, by rewrite [cycle_eq]; exact !mem_append_left ainl
|
||
|
||
theorem cycle_singleton (a : A) (h : [a] ≠ nil) : cycle [a] h = const a :=
|
||
coinduction
|
||
rfl
|
||
(λ B fr ch, by rewrite [cycle_eq, const_eq]; exact ch)
|
||
|
||
definition tails (s : stream A) : stream (stream A) :=
|
||
corec id tail (tail s)
|
||
|
||
theorem tails_eq (s : stream A) : tails s = tail s :: tails (tail s) :=
|
||
by esimp [tails]; rewrite [corec_eq]
|
||
|
||
theorem nth_tails : ∀ (n : nat) (s : stream A), nth n (tails s) = drop n (tail s) :=
|
||
begin
|
||
intro n, induction n with n' ih,
|
||
{intros, reflexivity},
|
||
{intro s, rewrite [nth_succ, drop_succ, tails_eq, tail_cons, ih]}
|
||
end
|
||
|
||
theorem tails_eq_iterate (s : stream A) : tails s = iterate tail (tail s) :=
|
||
rfl
|
||
|
||
definition inits_core (l : list A) (s : stream A) : stream (list A) :=
|
||
corec
|
||
prod.pr1
|
||
(λ p, match p with (l', s') := (l' ++ [head s'], tail s') end)
|
||
(l, s)
|
||
|
||
definition inits (s : stream A) : stream (list A) :=
|
||
inits_core [head s] (tail s)
|
||
|
||
theorem inits_core_eq (l : list A) (s : stream A) : inits_core l s = l :: inits_core (l ++ [head s]) (tail s) :=
|
||
by esimp [inits_core]; rewrite [corec_eq]
|
||
|
||
theorem tail_inits (s : stream A) : tail (inits s) = inits_core [head s, head (tail s)] (tail (tail s)) :=
|
||
by esimp [inits]; rewrite inits_core_eq
|
||
|
||
theorem inits_tail (s : stream A) : inits (tail s) = inits_core [head (tail s)] (tail (tail s)) :=
|
||
rfl
|
||
|
||
theorem cons_nth_inits_core : ∀ (a : A) (n : nat) (l : list A) (s : stream A),
|
||
a :: nth n (inits_core l s) = nth n (inits_core (a::l) s) :=
|
||
begin
|
||
intro a n,
|
||
induction n with n' ih,
|
||
{intros, reflexivity},
|
||
{intro l s, rewrite [*nth_succ, inits_core_eq, +tail_cons, ih, inits_core_eq (a::l) s] }
|
||
end
|
||
|
||
theorem nth_inits : ∀ (n : nat) (s : stream A), nth n (inits s) = approx (succ n) s :=
|
||
begin
|
||
intro n, induction n with n' ih,
|
||
{intros, reflexivity},
|
||
{intros, rewrite [nth_succ, approx_succ, -ih, tail_inits, inits_tail, cons_nth_inits_core]}
|
||
end
|
||
|
||
theorem inits_eq (s : stream A) : inits s = [head s] :: map (list.cons (head s)) (inits (tail s)) :=
|
||
begin
|
||
apply stream.ext, intro n,
|
||
cases n,
|
||
{reflexivity},
|
||
{rewrite [nth_inits, nth_succ, tail_cons, nth_map, nth_inits]}
|
||
end
|
||
|
||
theorem zip_inits_tails (s : stream A) : zip append (inits s) (tails s) = const s :=
|
||
begin
|
||
apply stream.ext, intro n,
|
||
rewrite [nth_zip, nth_inits, nth_tails, nth_const, approx_succ,
|
||
cons_append, append_approx_drop, stream.eta]
|
||
end
|
||
|
||
definition pure (a : A) : stream A :=
|
||
const a
|
||
|
||
definition apply (f : stream (A → B)) (s : stream A) : stream B :=
|
||
λ n, (nth n f) (nth n s)
|
||
|
||
infix `⊛`:75 := apply -- input as \o*
|
||
|
||
theorem identity (s : stream A) : pure id ⊛ s = s :=
|
||
rfl
|
||
theorem composition (g : stream (B → C)) (f : stream (A → B)) (s : stream A) : pure comp ⊛ g ⊛ f ⊛ s = g ⊛ (f ⊛ s) :=
|
||
rfl
|
||
theorem homomorphism (f : A → B) (a : A) : pure f ⊛ pure a = pure (f a) :=
|
||
rfl
|
||
theorem interchange (fs : stream (A → B)) (a : A) : fs ⊛ pure a = pure (λ f, f a) ⊛ fs :=
|
||
rfl
|
||
theorem map_eq_apply (f : A → B) (s : stream A) : map f s = pure f ⊛ s :=
|
||
rfl
|
||
|
||
definition nats : stream nat :=
|
||
λ n, n
|
||
|
||
theorem nth_nats (n : nat) : nth n nats = n :=
|
||
rfl
|
||
|
||
theorem nats_eq : nats = 0 :: map succ nats :=
|
||
begin
|
||
apply stream.ext, intro n,
|
||
cases n, reflexivity, rewrite [nth_succ]
|
||
end
|
||
|
||
section
|
||
open equiv
|
||
lemma stream_equiv_of_equiv {A B : Type} : A ≃ B → stream A ≃ stream B
|
||
| (mk f g l r) :=
|
||
mk (map f) (map g)
|
||
begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end
|
||
begin intros, rewrite [map_map, id_of_right_inverse r, map_id] end
|
||
end
|
||
|
||
definition lex (rel : A → A → Prop) (s₁ s₂ : stream A) : Prop :=
|
||
∃ i, rel (nth i s₁) (nth i s₂) ∧ ∀ j, j < i → nth j s₁ = nth j s₂
|
||
|
||
definition lex.trans {s₁ s₂ s₃} {rel : A → A → Prop} : transitive rel → lex rel s₁ s₂ → lex rel s₂ s₃ → lex rel s₁ s₃ :=
|
||
assume htrans h₁ h₂,
|
||
obtain (i₁ : nat) hlt₁ he₁, from h₁,
|
||
obtain (i₂ : nat) hlt₂ he₂, from h₂,
|
||
lt.by_cases
|
||
(λ i₁lti₂ : i₁ < i₂,
|
||
have aux : nth i₁ s₂ = nth i₁ s₃, from he₂ _ i₁lti₂,
|
||
begin
|
||
existsi i₁, split,
|
||
{rewrite -aux, exact hlt₁},
|
||
{intro j jlti₁, transitivity nth j s₂,
|
||
exact !he₁ jlti₁,
|
||
exact !he₂ (lt.trans jlti₁ i₁lti₂)}
|
||
end)
|
||
(λ i₁eqi₂ : i₁ = i₂,
|
||
begin
|
||
subst i₂, existsi i₁, split, exact htrans hlt₁ hlt₂, intro j jlti₁,
|
||
transitivity nth j s₂,
|
||
exact !he₁ jlti₁;
|
||
exact !he₂ jlti₁
|
||
end)
|
||
(λ i₂lti₁ : i₂ < i₁,
|
||
have nth i₂ s₁ = nth i₂ s₂, from he₁ _ i₂lti₁,
|
||
begin
|
||
existsi i₂, split,
|
||
{rewrite this, exact hlt₂},
|
||
{intro j jlti₂, transitivity nth j s₂,
|
||
exact !he₁ (lt.trans jlti₂ i₂lti₁),
|
||
exact !he₂ jlti₂}
|
||
end)
|
||
end stream
|