lean2/hott/hit/quotient.hlean

75 lines
2.6 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of set-quotients
-/
import .type_quotient .trunc
open eq is_trunc trunc type_quotient equiv
namespace quotient
section
parameters {A : Type} (R : A → A → hprop)
-- set-quotients are just truncations of type-quotients
definition quotient : Type := trunc 0 (type_quotient (λa a', trunctype.carrier (R a a')))
definition class_of (a : A) : quotient :=
tr (class_of _ a)
definition eq_of_rel {a a' : A} (H : R a a') : class_of a = class_of a' :=
ap tr (eq_of_rel _ H)
theorem is_hset_quotient : is_hset quotient :=
begin unfold quotient, exact _ end
protected definition rec {P : quotient → Type} [Pt : Πaa, is_hset (P aa)]
(Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a')
(x : quotient) : P x :=
begin
apply (@trunc.rec_on _ _ P x),
{ intro x', apply Pt},
{ intro y, fapply (type_quotient.rec_on y),
{ exact Pc},
{ intros, apply equiv.to_inv !(pathover_compose _ tr), apply Pp}}
end
protected definition rec_on [reducible] {P : quotient → Type} (x : quotient)
[Pt : Πaa, is_hset (P aa)] (Pc : Π(a : A), P (class_of a))
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a') : P x :=
rec Pc Pp x
theorem rec_eq_of_rel {P : quotient → Type} [Pt : Πaa, is_hset (P aa)]
(Pc : Π(a : A), P (class_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[eq_of_rel H] Pc a')
{a a' : A} (H : R a a') : apdo (rec Pc Pp) (eq_of_rel H) = Pp H :=
!is_hset.elimo
protected definition elim {P : Type} [Pt : is_hset P] (Pc : A → P)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (x : quotient) : P :=
rec Pc (λa a' H, pathover_of_eq (Pp H)) x
protected definition elim_on [reducible] {P : Type} (x : quotient) [Pt : is_hset P]
(Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P :=
elim Pc Pp x
theorem elim_eq_of_rel {P : Type} [Pt : is_hset P] (Pc : A → P)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a')
: ap (elim Pc Pp) (eq_of_rel H) = Pp H :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel H)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_eq_of_rel],
end
/-
there are no theorems to eliminate to the universe here,
because the universe is generally not a set
-/
end
end quotient
attribute quotient.class_of [constructor]
attribute quotient.rec quotient.elim [unfold-c 7] [recursor 7]
attribute quotient.rec_on quotient.elim_on [unfold-c 4]