lean2/hott/hit/quotient.hlean

320 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Ulrik Buchholtz
Quotients. This is a quotient without truncation for an arbitrary type-valued binary relation.
See also .set_quotient
-/
/-
The hit quotient is primitive, declared in init.hit.
The constructors are, given {A : Type} (R : A → A → Type),
* class_of : A → quotient R (A implicit, R explicit)
* eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit)
-/
import arity cubical.squareover types.arrow cubical.pathover2 types.pointed
open eq equiv sigma sigma.ops pi is_trunc pointed
namespace quotient
variables {A : Type} {R : A → A → Type}
protected definition elim {P : Type} (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a')
(x : quotient R) : P :=
quotient.rec Pc (λa a' H, pathover_of_eq _ (Pp H)) x
protected definition elim_on [reducible] {P : Type} (x : quotient R)
(Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P :=
quotient.elim Pc Pp x
theorem elim_eq_of_rel {P : Type} (Pc : A → P)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a')
: ap (quotient.elim Pc Pp) (eq_of_rel R H) = Pp H :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel R H)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑quotient.elim,rec_eq_of_rel],
end
protected definition rec_prop {A : Type} {R : A → A → Type} {P : quotient R → Type}
[H : Πx, is_prop (P x)] (Pc : Π(a : A), P (class_of R a)) (x : quotient R) : P x :=
quotient.rec Pc (λa a' H, !is_prop.elimo) x
protected definition elim_prop {P : Type} [H : is_prop P] (Pc : A → P) (x : quotient R) : P :=
quotient.elim Pc (λa a' H, !is_prop.elim) x
protected definition elim_type (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : quotient R → Type :=
quotient.elim Pc (λa a' H, ua (Pp H))
protected definition elim_type_on [reducible] (x : quotient R) (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type :=
quotient.elim_type Pc Pp x
theorem elim_type_eq_of_rel_fn (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel]; apply cast_ua_fn
-- rename to elim_type_eq_of_rel_fn_inv
theorem elim_type_eq_of_rel_inv (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ = to_inv (Pp H) :=
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, ap_inv, elim_eq_of_rel]; apply cast_ua_inv_fn
-- remove '
theorem elim_type_eq_of_rel_inv' (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (x : Pc a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ x = to_inv (Pp H) x :=
ap10 (elim_type_eq_of_rel_inv Pc Pp H) x
theorem elim_type_eq_of_rel.{u} (Pc : A → Type.{u})
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) p = to_fun (Pp H) p :=
ap10 (elim_type_eq_of_rel_fn Pc Pp H) p
definition elim_type_eq_of_rel' (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: pathover (quotient.elim_type Pc Pp) p (eq_of_rel R H) (to_fun (Pp H) p) :=
pathover_of_tr_eq (elim_type_eq_of_rel Pc Pp H p)
definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a')
: quotient R → Type :=
quotient.elim_type H.1 H.2
end quotient
attribute quotient.rec [recursor]
attribute quotient.elim [unfold 6] [recursor 6]
attribute quotient.elim_type [unfold 5]
attribute quotient.elim_on [unfold 4]
attribute quotient.elim_type_on [unfold 3]
namespace quotient
section
variables {A : Type} (R : A → A → Type)
/- The dependent universal property -/
definition quotient_pi_equiv (C : quotient R → Type) : (Πx, C x) ≃
(Σ(f : Π(a : A), C (class_of R a)), Π⦃a a' : A⦄ (H : R a a'), f a =[eq_of_rel R H] f a') :=
begin
fapply equiv.MK,
{ intro f, exact ⟨λa, f (class_of R a), λa a' H, apd f (eq_of_rel R H)⟩},
{ intro v x, induction v with i p, induction x,
exact (i a),
exact (p H)},
{ intro v, induction v with i p, esimp,
apply ap (sigma.mk i), apply eq_of_homotopy3, intro a a' H, apply rec_eq_of_rel},
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
apply eq_pathover_dep, esimp, rewrite rec_eq_of_rel, exact hrflo},
end
end
definition pquotient [constructor] {A : Type*} (R : A → A → Type) : Type* :=
pType.mk (quotient R) (class_of R pt)
/- the flattening lemma -/
namespace flattening
section
parameters {A : Type} (R : A → A → Type) (C : A → Type) (f : Π⦃a a'⦄, R a a' → C a ≃ C a')
include f
variables {a a' : A} {r : R a a'}
local abbreviation P [unfold 5] := quotient.elim_type C f
definition flattening_type : Type := Σa, C a
local abbreviation X := flattening_type
inductive flattening_rel : X → X → Type :=
| mk : Π⦃a a' : A⦄ (r : R a a') (c : C a), flattening_rel ⟨a, c⟩ ⟨a', f r c⟩
definition Ppt [constructor] (c : C a) : sigma P :=
⟨class_of R a, c⟩
definition Peq (r : R a a') (c : C a) : Ppt c = Ppt (f r c) :=
begin
fapply sigma_eq: esimp,
{ apply eq_of_rel R r},
{ refine elim_type_eq_of_rel' C f r c}
end
definition rec {Q : sigma P → Type} (Qpt : Π{a : A} (x : C a), Q (Ppt x))
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c =[Peq r c] Qpt (f r c))
(v : sigma P) : Q v :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply pi_pathover_left', esimp, intro c,
refine _ ⬝op apdt Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
rewrite ap_inv,
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
refine change_path _ (Qeq H c),
symmetry, rewrite [↑[Ppt, Peq]],
refine whisker_left _ !ap_dpair ⬝ _,
refine !dpair_eq_dpair_con⁻¹ ⬝ _, esimp,
apply ap (dpair_eq_dpair _),
esimp [elim_type_eq_of_rel',pathover_idp_of_eq],
exact !pathover_of_tr_eq_eq_concato⁻¹},
end
definition elim {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c))
(v : sigma P) : Q :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply arrow_pathover_constant_right, esimp,
intro c, exact Qeq H c ⬝ ap Qpt (elim_type_eq_of_rel C f H c)⁻¹},
end
theorem elim_Peq {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) {a a' : A} (r : R a a')
(c : C a) : ap (elim @Qpt Qeq) (Peq r c) = Qeq r c :=
begin
refine !ap_dpair_eq_dpair ⬝ _,
refine !apd011_eq_apo11_apd ⬝ _,
rewrite [rec_eq_of_rel, ▸*],
refine !apo11_arrow_pathover_constant_right ⬝ _,
rewrite [↑elim_type_eq_of_rel', to_right_inv !pathover_equiv_tr_eq, ap_inv],
apply inv_con_cancel_right
end
open flattening_rel
definition flattening_lemma : sigma P ≃ quotient flattening_rel :=
begin
fapply equiv.MK,
{ refine elim _ _,
{ intro a c, exact class_of _ ⟨a, c⟩},
{ intro a a' r c, apply eq_of_rel, constructor}},
{ intro q, induction q with x x x' H,
{ exact Ppt x.2},
{ induction H, esimp, apply Peq}},
{ intro q, induction q with x x x' H: esimp,
{ induction x with a c, reflexivity},
{ induction H, esimp, apply eq_pathover, apply hdeg_square,
refine ap_compose (elim _ _) (quotient.elim _ _) _ ⬝ _,
rewrite [elim_eq_of_rel, ap_id, ▸*],
apply elim_Peq}},
{ refine rec (λa x, idp) _, intros,
apply eq_pathover, apply hdeg_square,
refine ap_compose (quotient.elim _ _) (elim _ _) _ ⬝ _,
rewrite [elim_Peq, ap_id, ▸*],
apply elim_eq_of_rel}
end
end
end flattening
section
open is_equiv equiv prod prod.ops
variables {A : Type} (R : A → A → Type)
{B : Type} (Q : B → B → Type)
(f : A → B) (k : Πa a' : A, R a a' → Q (f a) (f a'))
include f k
protected definition functor [reducible] : quotient R → quotient Q :=
quotient.elim (λa, class_of Q (f a)) (λa a' r, eq_of_rel Q (k a a' r))
variables [F : is_equiv f] [K : Πa a', is_equiv (k a a')]
include F K
protected definition functor_inv [reducible] : quotient Q → quotient R :=
quotient.elim (λb, class_of R (f⁻¹ b))
(λb b' q, eq_of_rel R ((k (f⁻¹ b) (f⁻¹ b'))⁻¹
((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q)))
protected definition is_equiv [instance]
: is_equiv (quotient.functor R Q f k):=
begin
fapply adjointify _ (quotient.functor_inv R Q f k),
{ intro qb, induction qb with b b b' q,
{ apply ap (class_of Q), apply right_inv },
{ apply eq_pathover, rewrite [ap_id,ap_compose' (quotient.elim _ _)],
do 2 krewrite elim_eq_of_rel, rewrite (right_inv (k (f⁻¹ b) (f⁻¹ b'))),
have H1 : pathover (λz : B × B, Q z.1 z.2)
((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q)
(prod_eq (right_inv f b) (right_inv f b')) q,
begin apply pathover_of_eq_tr, krewrite [prod_eq_inv,prod_eq_transport] end,
have H2 : square
(ap (λx : (Σz : B × B, Q z.1 z.2), class_of Q x.1.1)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1))
(ap (λx : (Σz : B × B, Q z.1 z.2), class_of Q x.1.2)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1))
(eq_of_rel Q ((right_inv f b)⁻¹ ▸ (right_inv f b')⁻¹ ▸ q))
(eq_of_rel Q q),
from
natural_square_tr (λw : (Σz : B × B, Q z.1 z.2), eq_of_rel Q w.2)
(sigma_eq (prod_eq (right_inv f b) (right_inv f b')) H1),
krewrite (ap_compose' (class_of Q)) at H2,
krewrite (ap_compose' (λz : B × B, z.1)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr1 at H2, krewrite prod_eq_pr1 at H2,
krewrite (ap_compose' (class_of Q) (λx : (Σz : B × B, Q z.1 z.2), x.1.2)) at H2,
krewrite (ap_compose' (λz : B × B, z.2)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr2 at H2, krewrite prod_eq_pr2 at H2,
apply H2 } },
{ intro qa, induction qa with a a a' r,
{ apply ap (class_of R), apply left_inv },
{ apply eq_pathover, rewrite [ap_id,(ap_compose' (quotient.elim _ _))],
do 2 krewrite elim_eq_of_rel,
have H1 : pathover (λz : A × A, R z.1 z.2)
((left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r)
(prod_eq (left_inv f a) (left_inv f a')) r,
begin apply pathover_of_eq_tr, krewrite [prod_eq_inv,prod_eq_transport] end,
have H2 : square
(ap (λx : (Σz : A × A, R z.1 z.2), class_of R x.1.1)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1))
(ap (λx : (Σz : A × A, R z.1 z.2), class_of R x.1.2)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1))
(eq_of_rel R ((left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r))
(eq_of_rel R r),
begin
exact
natural_square_tr (λw : (Σz : A × A, R z.1 z.2), eq_of_rel R w.2)
(sigma_eq (prod_eq (left_inv f a) (left_inv f a')) H1)
end,
krewrite (ap_compose' (class_of R)) at H2,
krewrite (ap_compose' (λz : A × A, z.1)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr1 at H2, krewrite prod_eq_pr1 at H2,
krewrite (ap_compose' (class_of R) (λx : (Σz : A × A, R z.1 z.2), x.1.2)) at H2,
krewrite (ap_compose' (λz : A × A, z.2)) at H2,
rewrite sigma.ap_pr1 at H2, rewrite sigma_eq_pr1 at H2,
krewrite prod.ap_pr2 at H2, krewrite prod_eq_pr2 at H2,
have H3 :
(k (f⁻¹ (f a)) (f⁻¹ (f a')))⁻¹
((right_inv f (f a))⁻¹ ▸ (right_inv f (f a'))⁻¹ ▸ k a a' r)
= (left_inv f a)⁻¹ ▸ (left_inv f a')⁻¹ ▸ r,
begin
rewrite [adj f a,adj f a',ap_inv',ap_inv'],
rewrite [-(tr_compose _ f (left_inv f a')⁻¹ (k a a' r)),
-(tr_compose _ f (left_inv f a)⁻¹)],
rewrite [-(fn_tr_eq_tr_fn (left_inv f a')⁻¹ (λx, k a x) r),
-(fn_tr_eq_tr_fn (left_inv f a)⁻¹
(λx, k x (f⁻¹ (f a')))),
left_inv (k _ _)]
end,
rewrite H3, apply H2 } }
end
end
section
variables {A : Type} (R : A → A → Type)
{B : Type} (Q : B → B → Type)
(f : A ≃ B) (k : Πa a' : A, R a a' ≃ Q (f a) (f a'))
include f k
/- This could also be proved using ua, but then it wouldn't compute -/
protected definition equiv : quotient R ≃ quotient Q :=
equiv.mk (quotient.functor R Q f k) _
end
end quotient