1090 lines
42 KiB
Text
1090 lines
42 KiB
Text
/-
|
||
Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer, Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
The basic definitions are in init.pointed
|
||
-/
|
||
|
||
import .nat.basic ..arity ..prop_trunc
|
||
open is_trunc eq prod sigma nat equiv option is_equiv bool unit sigma.ops sum algebra
|
||
|
||
namespace pointed
|
||
variables {A B : Type}
|
||
|
||
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
|
||
pointed.mk idp
|
||
|
||
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
||
pointed.mk (f pt)
|
||
|
||
definition loop [reducible] [constructor] (A : Type*) : Type* :=
|
||
pointed.mk' (point A = point A)
|
||
|
||
definition loopn [reducible] : ℕ → Type* → Type*
|
||
| loopn 0 X := X
|
||
| loopn (n+1) X := loop (loopn n X)
|
||
|
||
notation `Ω` := loop
|
||
notation `Ω[`:95 n:0 `]`:0 := loopn n
|
||
|
||
namespace ops
|
||
-- this is in a separate namespace because it caused type class inference to loop in some places
|
||
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
|
||
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
|
||
H
|
||
end ops
|
||
|
||
definition is_trunc_loop [instance] [priority 1100] (A : Type*)
|
||
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
|
||
!is_trunc_eq
|
||
|
||
definition loopn_zero_eq [unfold_full] (A : Type*)
|
||
: Ω[0] A = A := rfl
|
||
|
||
definition loopn_succ_eq [unfold_full] (k : ℕ) (A : Type*)
|
||
: Ω[succ k] A = Ω (Ω[k] A) := rfl
|
||
|
||
definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt
|
||
definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt
|
||
definition refln_eq_refl [unfold_full] (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl
|
||
|
||
definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||
Ω[n] (pointed.mk' A)
|
||
|
||
definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A :=
|
||
begin cases k with k, exact mul, exact concat end
|
||
|
||
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
|
||
begin
|
||
cases A with A a, cases B with B b, esimp at *,
|
||
fapply apdt011 @pType.mk,
|
||
{ apply ua f},
|
||
{ rewrite [cast_ua, p]},
|
||
end
|
||
|
||
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
|
||
: Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B :=
|
||
by induction p; exact ⟨idp, idpo⟩
|
||
|
||
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with X x, exact ⟨X, x⟩},
|
||
{ intro x, induction x with X x, exact pointed.MK X x},
|
||
{ intro x, induction x with X x, reflexivity},
|
||
{ intro x, induction x with X x, reflexivity},
|
||
end
|
||
|
||
definition pType.eta_expand [constructor] (A : Type*) : Type* :=
|
||
pointed.MK A pt
|
||
|
||
definition add_point [constructor] (A : Type) : Type* :=
|
||
pointed.Mk (none : option A)
|
||
postfix `₊`:(max+1) := add_point
|
||
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
|
||
end pointed
|
||
|
||
namespace pointed
|
||
/- truncated pointed types -/
|
||
definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*}
|
||
(p : A = B :> Type) (q : Point A =[p] Point B) : A = B :=
|
||
begin
|
||
induction A with A HA a, induction B with B HB b, esimp at *,
|
||
induction q, esimp,
|
||
refine ap010 (ptrunctype.mk A) _ a,
|
||
exact !is_prop.elim
|
||
end
|
||
|
||
definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*)
|
||
: A = B :=
|
||
begin
|
||
cases pType_eq_elim p with q r,
|
||
exact ptrunctype_eq q r
|
||
end
|
||
|
||
definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A :=
|
||
trunctype.struct A
|
||
|
||
end pointed open pointed
|
||
|
||
namespace pointed
|
||
variables {A B C D : Type*} {f g h : A →* B}
|
||
|
||
/- categorical properties of pointed maps -/
|
||
|
||
definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
|
||
pointed.MK A a →* pointed.MK B (f a) :=
|
||
pmap.mk f idp
|
||
|
||
definition pid [constructor] [refl] (A : Type*) : A →* A :=
|
||
pmap.mk id idp
|
||
|
||
definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C :=
|
||
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
|
||
|
||
infixr ` ∘* `:60 := pcompose
|
||
|
||
definition passoc [constructor] (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
|
||
phomotopy.mk (λa, idp)
|
||
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end
|
||
|
||
definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
/- equivalences and equalities -/
|
||
|
||
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||
begin
|
||
fapply equiv.MK : intros f,
|
||
{ exact ⟨f , respect_pt f⟩ },
|
||
all_goals cases f with f p,
|
||
{ exact pmap.mk f p },
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition pmap.eta_expand [constructor] {A B : Type*} (f : A →* B) : A →* B :=
|
||
pmap.mk f (pmap.resp_pt f)
|
||
|
||
definition pmap_equiv_right (A : Type*) (B : Type)
|
||
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro u a, exact pmap.to_fun u.2 a},
|
||
{ intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
|
||
intro a, esimp, exact f a,
|
||
reflexivity},
|
||
{ intro f, reflexivity},
|
||
{ intro u, cases u with b f, cases f with f p, esimp at *, induction p,
|
||
reflexivity}
|
||
end
|
||
|
||
/- some specific pointed maps -/
|
||
|
||
-- The constant pointed map between any two types
|
||
definition pconst [constructor] (A B : Type*) : A →* B :=
|
||
pmap.mk (λ a, Point B) idp
|
||
|
||
-- the pointed type of pointed maps
|
||
definition ppmap [constructor] (A B : Type*) : Type* :=
|
||
pType.mk (A →* B) (pconst A B)
|
||
|
||
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
|
||
pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity)
|
||
|
||
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
|
||
pmap.mk eq.inverse idp
|
||
|
||
/-
|
||
we generalize the definition of ap1 to arbitrary paths, so that we can prove properties about it
|
||
using path induction (see for example ap1_gen_con and ap1_gen_con_natural)
|
||
-/
|
||
definition ap1_gen [reducible] [unfold 6 9 10] {A B : Type} (f : A → B) {a a' : A} (p : a = a')
|
||
{b b' : B} (q : f a = b) (q' : f a' = b') : b = b' :=
|
||
q⁻¹ ⬝ ap f p ⬝ q'
|
||
|
||
definition ap1_gen_idp [unfold 6] {A B : Type} (f : A → B) {a a' : A} (p : a = a') :
|
||
ap1_gen f p idp idp = ap f p :=
|
||
!con_idp ⬝ idp_con (ap f p)
|
||
|
||
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
|
||
begin
|
||
fconstructor,
|
||
{ intro p, exact (respect_pt f)⁻¹ ⬝ ap f p ⬝ respect_pt f },
|
||
{ esimp, apply con.left_inv}
|
||
end
|
||
|
||
definition apn (n : ℕ) (f : A →* B) : Ω[n] A →* Ω[n] B :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact f},
|
||
{ esimp [loopn], exact ap1 IH}
|
||
end
|
||
|
||
notation `Ω→`:(max+5) := ap1
|
||
notation `Ω→[`:95 n:0 `]`:0 := apn n
|
||
|
||
definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||
: B a →* B a' :=
|
||
pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
|
||
|
||
definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
|
||
pointed.MK A a →* pointed.MK A a' :=
|
||
pmap.mk id p
|
||
|
||
definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A :=
|
||
pmap.mk (bool.rec pt a) idp
|
||
|
||
/- properties of pointed maps -/
|
||
|
||
definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp
|
||
definition apn_succ [unfold_full] (n : ℕ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp
|
||
|
||
definition ap1_gen_con {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} (p₁ : a₁ = a₂) (p₂ : a₂ = a₃)
|
||
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) :
|
||
ap1_gen f (p₁ ⬝ p₂) q₁ q₃ = ap1_gen f p₁ q₁ q₂ ⬝ ap1_gen f p₂ q₂ q₃ :=
|
||
begin induction p₂, induction q₃, induction q₂, reflexivity end
|
||
|
||
definition ap1_gen_inv {A B : Type} (f : A → B) {a₁ a₂ : A} (p₁ : a₁ = a₂)
|
||
{b₁ b₂ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) :
|
||
ap1_gen f p₁⁻¹ q₂ q₁ = (ap1_gen f p₁ q₁ q₂)⁻¹ :=
|
||
begin induction p₁, induction q₁, induction q₂, reflexivity end
|
||
|
||
definition ap1_con {A B : Type*} (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
|
||
ap1_gen_con f p q (respect_pt f) (respect_pt f) (respect_pt f)
|
||
|
||
theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ :=
|
||
ap1_gen_inv f p (respect_pt f) (respect_pt f)
|
||
|
||
-- the following two facts is used for the suspension axiom to define spectrum cohomology
|
||
definition ap1_gen_con_natural {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {p₁ p₁' : a₁ = a₂}
|
||
{p₂ p₂' : a₂ = a₃}
|
||
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃)
|
||
(r₁ : p₁ = p₁') (r₂ : p₂ = p₂') :
|
||
square (ap1_gen_con f p₁ p₂ q₁ q₂ q₃)
|
||
(ap1_gen_con f p₁' p₂' q₁ q₂ q₃)
|
||
(ap (λp, ap1_gen f p q₁ q₃) (r₁ ◾ r₂))
|
||
(ap (λp, ap1_gen f p q₁ q₂) r₁ ◾ ap (λp, ap1_gen f p q₂ q₃) r₂) :=
|
||
begin induction r₁, induction r₂, exact vrfl end
|
||
|
||
definition ap1_gen_con_idp {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) :
|
||
ap1_gen_con f idp idp q q q ⬝ con.left_inv q ◾ con.left_inv q = con.left_inv q :=
|
||
by induction q; reflexivity
|
||
|
||
definition apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A)
|
||
: apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q :=
|
||
ap1_con (apn n f) p q
|
||
|
||
definition apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ :=
|
||
ap1_inv (apn n f) p
|
||
|
||
definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
|
||
begin
|
||
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
|
||
apply is_equiv.homotopy_closed (ap f),
|
||
intro p, exact !idp_con⁻¹
|
||
end
|
||
|
||
definition is_equiv_apn (n : ℕ) (f : A →* B) [H : is_equiv f]
|
||
: is_equiv (apn n f) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact H},
|
||
{ exact is_equiv_ap1 (apn n f)}
|
||
end
|
||
|
||
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
|
||
: pinverse (p ⬝ q) = pinverse q ⬝ pinverse p :=
|
||
!con_inv
|
||
|
||
definition pinverse_inv [constructor] {X : Type*} (p : Ω X)
|
||
: pinverse p⁻¹ = (pinverse p)⁻¹ :=
|
||
idp
|
||
|
||
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
|
||
!is_equiv_cast
|
||
|
||
/- categorical properties of pointed homotopies -/
|
||
|
||
protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro a, exact idp},
|
||
{ apply idp_con}
|
||
end
|
||
|
||
protected definition phomotopy.rfl [constructor] {f : A →* B} : f ~* f :=
|
||
phomotopy.refl f
|
||
|
||
protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h)
|
||
: f ~* h :=
|
||
phomotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (to_homotopy_pt q) ⬝ to_homotopy_pt p)
|
||
|
||
protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f :=
|
||
phomotopy.mk (λa, (p a)⁻¹) (inv_con_eq_of_eq_con (to_homotopy_pt p)⁻¹)
|
||
|
||
infix ` ⬝* `:75 := phomotopy.trans
|
||
postfix `⁻¹*`:(max+1) := phomotopy.symm
|
||
|
||
/- equalities and equivalences relating pointed homotopies -/
|
||
|
||
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B)
|
||
: (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ respect_pt g = respect_pt f :=
|
||
begin
|
||
fapply equiv.MK : intros h,
|
||
{ exact ⟨h , to_homotopy_pt h⟩ },
|
||
all_goals cases h with h p,
|
||
{ exact phomotopy.mk h p },
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition phomotopy.eta_expand [constructor] {A B : Type*} {f g : A →* B} (p : f ~* g) : f ~* g :=
|
||
phomotopy.mk p (phomotopy.homotopy_pt p)
|
||
|
||
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] :
|
||
is_trunc n (A →* B) :=
|
||
is_trunc_equiv_closed_rev _ !pmap.sigma_char
|
||
|
||
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
|
||
is_trunc n (ppmap A B) :=
|
||
!is_trunc_pmap
|
||
|
||
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
|
||
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
|
||
|
||
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
|
||
: f ~* h :=
|
||
p ⬝* phomotopy_of_eq q
|
||
|
||
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
|
||
: f ~* h :=
|
||
phomotopy_of_eq p ⬝* q
|
||
|
||
infix ` ⬝*p `:75 := pconcat_eq
|
||
infix ` ⬝p* `:75 := eq_pconcat
|
||
|
||
definition pmap_eq_equiv_internal {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||
: eq_equiv_fn_eq pmap.sigma_char f g
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g),
|
||
pathover (λh, h pt = pt) (respect_pt f) p (respect_pt g)
|
||
: sigma_eq_equiv _ _
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap (λh, h pt) p ⬝ respect_pt g
|
||
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (respect_pt f)
|
||
(respect_pt g))
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap10 p pt ⬝ respect_pt g
|
||
: sigma_equiv_sigma_right
|
||
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), respect_pt f = p pt ⬝ respect_pt g
|
||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ respect_pt g = respect_pt f
|
||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
... ≃ (f ~* g) : phomotopy.sigma_char f g
|
||
|
||
definition pmap_eq_equiv_internal_idp {A B : Type*} (f : A →* B) :
|
||
pmap_eq_equiv_internal f f idp = phomotopy.refl f :=
|
||
begin
|
||
apply ap (phomotopy.mk (homotopy.refl _)), induction B with B b₀, induction f with f f₀,
|
||
esimp at *, induction f₀, reflexivity
|
||
end
|
||
|
||
definition eq_of_phomotopy' (p : f ~* g) : f = g :=
|
||
to_inv (pmap_eq_equiv_internal f g) p
|
||
|
||
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||
begin
|
||
refine equiv_change_fun (pmap_eq_equiv_internal f g) _,
|
||
{ apply phomotopy_of_eq },
|
||
{ intro p, induction p, exact pmap_eq_equiv_internal_idp f }
|
||
end
|
||
|
||
definition eq_of_phomotopy (p : f ~* g) : f = g :=
|
||
to_inv (pmap_eq_equiv f g) p
|
||
|
||
-- TODO: flip arguments in s
|
||
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
|
||
eq_of_phomotopy (phomotopy.mk r s⁻¹)
|
||
|
||
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
|
||
pmap_eq p !is_set.elim
|
||
|
||
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f a, cases f with f p, exact f (some a)},
|
||
{ intro f, fconstructor,
|
||
intro a, cases a, exact pt, exact f a,
|
||
reflexivity},
|
||
{ intro f, reflexivity},
|
||
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
||
{ esimp, exact !con.left_inv⁻¹}},
|
||
end
|
||
|
||
-- pmap_pbool_pequiv is the pointed equivalence
|
||
definition pmap_pbool_equiv [constructor] (B : Type*) : (pbool →* B) ≃ B :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, cases f with f p, exact f tt},
|
||
{ intro b, fconstructor,
|
||
intro u, cases u, exact pt, exact b,
|
||
reflexivity},
|
||
{ intro b, reflexivity},
|
||
{ intro f, cases f with f p, esimp, fapply pmap_eq,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
|
||
{ esimp, exact !con.left_inv⁻¹}},
|
||
end
|
||
|
||
/-
|
||
Pointed maps respecting pointed homotopies.
|
||
In general we need function extensionality for pap,
|
||
but for particular F we can do it without function extensionality.
|
||
This is preferred, because such pointed homotopies compute
|
||
-/
|
||
definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g :=
|
||
phomotopy.mk (ap010 (λf, pmap.to_fun (F f)) (eq_of_phomotopy p))
|
||
begin cases eq_of_phomotopy p, apply idp_con end
|
||
|
||
definition ap1_phomotopy {f g : A →* B} (p : f ~* g)
|
||
: ap1 f ~* ap1 g :=
|
||
begin
|
||
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
|
||
esimp at *, induction q, induction pg,
|
||
fapply phomotopy.mk,
|
||
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹ᵖ, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
||
apply ap_con_eq_con_ap},
|
||
{ induction A with A a, unfold [ap_con_eq_con_ap], generalize p a, generalize g a, intro b q,
|
||
induction q, reflexivity}
|
||
end
|
||
|
||
definition apn_phomotopy {f g : A →* B} (n : ℕ) (p : f ~* g) : apn n f ~* apn n g :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact p},
|
||
{ exact ap1_phomotopy IH}
|
||
end
|
||
|
||
/- pointed homotopies between the given pointed maps -/
|
||
|
||
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ },
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_pcompose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
||
begin
|
||
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
|
||
induction pg, induction pf,
|
||
fconstructor,
|
||
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_pcompose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
|
||
begin
|
||
fconstructor,
|
||
{ intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
|
||
refine whisker_right _ !ap_inv ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
|
||
exact !inv_inv⁻¹},
|
||
{ induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity},
|
||
end
|
||
|
||
definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
|
||
phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl
|
||
|
||
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
|
||
(r : p = q) : ptransport B p ~* ptransport B q :=
|
||
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end
|
||
|
||
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
|
||
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
|
||
h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a :=
|
||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||
|
||
definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap1_phomotopy IH ⬝* ap1_pid}
|
||
end
|
||
|
||
definition apn_pconst (A B : Type*) (n : ℕ) :
|
||
apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity },
|
||
{ exact ap1_phomotopy IH ⬝* !ap1_pconst }
|
||
end
|
||
|
||
definition apn_pcompose (n : ℕ) (g : B →* C) (f : A →* B) :
|
||
apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose}
|
||
end
|
||
|
||
definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A :=
|
||
by reflexivity
|
||
|
||
definition pinverse_pinverse (A : Type*) : pinverse ∘* pinverse ~* pid (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ apply inv_inv},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) :
|
||
pcast (ap Ω p) ~* ap1 (pcast p) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹},
|
||
{ induction p, reflexivity}
|
||
end
|
||
|
||
definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
|
||
ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, esimp, apply idp_con},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
|
||
phomotopy.mk
|
||
begin induction p, reflexivity end
|
||
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
|
||
|
||
/- pointed equivalences -/
|
||
|
||
/- constructors / projections + variants -/
|
||
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
|
||
pequiv.mk f _ (respect_pt f)
|
||
|
||
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
|
||
pequiv.mk f _ H
|
||
|
||
protected definition pequiv.MK [constructor] (f : A →* B) (g : B → A)
|
||
(gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B :=
|
||
pequiv.mk f (adjointify f g fg gf) (respect_pt f)
|
||
|
||
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
|
||
equiv.mk f _
|
||
|
||
definition to_pinv [constructor] (f : A ≃* B) : B →* A :=
|
||
pmap.mk f⁻¹ ((ap f⁻¹ (respect_pt f))⁻¹ ⬝ left_inv f pt)
|
||
|
||
definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f)
|
||
: pequiv.to_pmap (pequiv_of_pmap f H) = f :=
|
||
by cases f; reflexivity
|
||
|
||
/-
|
||
A version of pequiv.MK with stronger conditions.
|
||
The advantage of defining a pointed equivalence with this definition is that there is a
|
||
pointed homotopy between the inverse of the resulting equivalence and the given pointed map g.
|
||
This is not the case when using `pequiv.MK` (if g is a pointed map),
|
||
that will only give an ordinary homotopy.
|
||
-/
|
||
protected definition pequiv.MK2 [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B :=
|
||
pequiv.MK f g gf fg
|
||
|
||
definition to_pmap_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK2 f g gf fg ~* f :=
|
||
phomotopy.mk (λb, idp) !idp_con
|
||
|
||
definition to_pinv_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK2 f g gf fg) ~* g :=
|
||
phomotopy.mk (λb, idp)
|
||
abstract [irreducible] begin
|
||
esimp,
|
||
note H := to_homotopy_pt gf, note H2 := to_homotopy_pt fg,
|
||
note H3 := eq_top_of_square (natural_square (to_homotopy fg) (respect_pt f)),
|
||
rewrite [▸* at *, H, H3, H2, ap_id, - +con.assoc, ap_compose' f g, con_inv,
|
||
- ap_inv, - +ap_con g],
|
||
apply whisker_right, apply ap02 g,
|
||
rewrite [ap_con, - + con.assoc, +ap_inv, +inv_con_cancel_right, con.left_inv],
|
||
end end
|
||
|
||
/- categorical properties of pointed equivalences -/
|
||
|
||
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
|
||
pequiv_of_pmap !pid !is_equiv_id
|
||
|
||
protected definition pequiv.rfl [constructor] : A ≃* A :=
|
||
pequiv.refl A
|
||
|
||
protected definition pequiv.symm [symm] [constructor] (f : A ≃* B) : B ≃* A :=
|
||
pequiv_of_pmap (to_pinv f) !is_equiv_inv
|
||
|
||
protected definition pequiv.trans [trans] [constructor] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
|
||
pequiv_of_pmap (g ∘* f) !is_equiv_compose
|
||
|
||
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
|
||
pequiv_of_pmap (g ∘* f) (is_equiv_compose g f)
|
||
|
||
infixr ` ∘*ᵉ `:60 := pequiv_compose
|
||
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
|
||
infix ` ⬝e* `:75 := pequiv.trans
|
||
|
||
/- more on pointed equivalences -/
|
||
|
||
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||
: B a ≃* B a' :=
|
||
pequiv_of_pmap (ptransport B p) !is_equiv_tr
|
||
|
||
definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C)
|
||
: pequiv.to_pmap (f ⬝e* g) = g ∘* f :=
|
||
!to_pmap_pequiv_of_pmap
|
||
|
||
definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B :=
|
||
pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq)
|
||
|
||
definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f')
|
||
: A ≃* B :=
|
||
pequiv.MK f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq))
|
||
|
||
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
|
||
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
|
||
left_inv f a ▸ g (f a)
|
||
|
||
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
|
||
pType_eq (equiv_of_pequiv f) !respect_pt
|
||
|
||
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
|
||
pequiv_of_pmap (pcast p) !is_equiv_tr
|
||
|
||
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
|
||
p ⬝e* pequiv_of_eq q
|
||
|
||
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
|
||
pequiv_of_eq p ⬝e* q
|
||
|
||
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
|
||
pType_eq (equiv_of_pequiv p) !respect_pt
|
||
|
||
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
|
||
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
|
||
|
||
infix ` ⬝e*p `:75 := peconcat_eq
|
||
infix ` ⬝pe* `:75 := eq_peconcat
|
||
|
||
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
|
||
pcast_commute f p
|
||
|
||
definition pequiv.eta_expand [constructor] {A B : Type*} (f : A ≃* B) : A ≃* B :=
|
||
pequiv.mk f _ (pequiv.resp_pt f)
|
||
|
||
/-
|
||
the theorem pequiv_eq, which gives a condition for two pointed equivalences are equal
|
||
is in types.equiv to avoid circular imports
|
||
-/
|
||
|
||
/- computation rules of pointed homotopies, possibly combined with pointed equivalences -/
|
||
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
|
||
phomotopy.mk (λa, ap h (p a))
|
||
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con⁻¹ ⬝ ap02 _ (to_homotopy_pt p)) end
|
||
|
||
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
|
||
phomotopy.mk (λa, p (h a))
|
||
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con_eq_con_ap)⁻¹ ⬝ !con.assoc ⬝
|
||
whisker_left _ (to_homotopy_pt p) end
|
||
|
||
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
|
||
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
|
||
pwhisker_left _ p ⬝* pwhisker_right _ q
|
||
|
||
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
|
||
phomotopy.mk (left_inv f)
|
||
abstract begin
|
||
esimp, symmetry, apply con_inv_cancel_left
|
||
end end
|
||
|
||
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
|
||
phomotopy.mk (right_inv f)
|
||
abstract begin
|
||
induction f with f H p, esimp,
|
||
rewrite [ap_con, +ap_inv, -adj f, -ap_compose],
|
||
note q := natural_square (right_inv f) p,
|
||
rewrite [ap_id at q],
|
||
apply eq_bot_of_square,
|
||
exact q
|
||
end end
|
||
|
||
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
|
||
begin
|
||
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
|
||
refine !passoc⁻¹* ⬝* _:
|
||
refine pwhisker_right _ (pleft_inv f) ⬝* _:
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
|
||
begin
|
||
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
|
||
refine !passoc ⬝* _:
|
||
refine pwhisker_left _ (pright_inv f) ⬝* _:
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
|
||
begin
|
||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (pright_inv f) ⬝* _,
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
|
||
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
|
||
begin
|
||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (pleft_inv f) ⬝* _,
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
|
||
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
|
||
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
|
||
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
||
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ (pleft_inv f) ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
|
||
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ (pright_inv f) ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
||
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
|
||
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
|
||
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
|
||
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition pcompose2 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (p : f ~* f') (q : g ~* g') :
|
||
g ∘* f ~* g' ∘* f' :=
|
||
pwhisker_right f q ⬝* pwhisker_left g' p
|
||
|
||
infixr ` ◾* `:80 := pcompose2
|
||
|
||
definition phomotopy_pinv_of_phomotopy_pid {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : g ∘* f ~* pid A) : f ~* g⁻¹ᵉ* :=
|
||
phomotopy_pinv_left_of_phomotopy p ⬝* !pcompose_pid
|
||
|
||
definition phomotopy_pinv_of_phomotopy_pid' {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : f ∘* g ~* pid B) : f ~* g⁻¹ᵉ* :=
|
||
phomotopy_pinv_right_of_phomotopy p ⬝* !pid_pcompose
|
||
|
||
definition pinv_phomotopy_of_pid_phomotopy {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : pid A ~* g ∘* f) : g⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid p⁻¹*)⁻¹*
|
||
|
||
definition pinv_phomotopy_of_pid_phomotopy' {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : pid B ~* f ∘* g) : g⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid' p⁻¹*)⁻¹*
|
||
|
||
definition pinv_pinv {A B : Type*} (f : A ≃* B) : (f⁻¹ᵉ*)⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid (pleft_inv f))⁻¹*
|
||
|
||
definition pinv2 {A B : Type*} {f f' : A ≃* B} (p : f ~* f') : f⁻¹ᵉ* ~* f'⁻¹ᵉ* :=
|
||
phomotopy_pinv_of_phomotopy_pid (pinv_right_phomotopy_of_phomotopy (!pid_pcompose ⬝* p)⁻¹*)
|
||
|
||
postfix [parsing_only] `⁻²*`:(max+10) := pinv2
|
||
|
||
definition trans_pinv {A B C : Type*} (f : A ≃* B) (g : B ≃* C) :
|
||
(f ⬝e* g)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g⁻¹ᵉ* :=
|
||
begin
|
||
refine (phomotopy_pinv_of_phomotopy_pid _)⁻¹*,
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose) ⬝* _,
|
||
apply pright_inv
|
||
end
|
||
|
||
definition pinv_trans_pinv_left {A B C : Type*} (f : B ≃* A) (g : B ≃* C) :
|
||
(f⁻¹ᵉ* ⬝e* g)⁻¹ᵉ* ~* f ∘* g⁻¹ᵉ* :=
|
||
!trans_pinv ⬝* pwhisker_right _ !pinv_pinv
|
||
|
||
definition pinv_trans_pinv_right {A B C : Type*} (f : A ≃* B) (g : C ≃* B) :
|
||
(f ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g :=
|
||
!trans_pinv ⬝* pwhisker_left _ !pinv_pinv
|
||
|
||
definition pinv_trans_pinv_pinv {A B C : Type*} (f : B ≃* A) (g : C ≃* B) :
|
||
(f⁻¹ᵉ* ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f ∘* g :=
|
||
!trans_pinv ⬝* !pinv_pinv ◾* !pinv_pinv
|
||
|
||
definition pinv_pcompose_cancel_left {A B C : Type*} (g : B ≃* C) (f : A →* B) :
|
||
g⁻¹ᵉ* ∘* (g ∘* f) ~* f :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f !pleft_inv ⬝* !pid_pcompose
|
||
|
||
definition pcompose_pinv_cancel_left {A B C : Type*} (g : C ≃* B) (f : A →* B) :
|
||
g ∘* (g⁻¹ᵉ* ∘* f) ~* f :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f !pright_inv ⬝* !pid_pcompose
|
||
|
||
definition pinv_pcompose_cancel_right {A B C : Type*} (g : B →* C) (f : B ≃* A) :
|
||
(g ∘* f⁻¹ᵉ*) ∘* f ~* g :=
|
||
!passoc ⬝* pwhisker_left g !pleft_inv ⬝* !pcompose_pid
|
||
|
||
definition pcompose_pinv_cancel_right {A B C : Type*} (g : B →* C) (f : A ≃* B) :
|
||
(g ∘* f) ∘* f⁻¹ᵉ* ~* g :=
|
||
!passoc ⬝* pwhisker_left g !pright_inv ⬝* !pcompose_pid
|
||
|
||
/- pointed equivalences between particular pointed types -/
|
||
|
||
-- TODO: remove is_equiv_apn, which is proven again here
|
||
definition loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
|
||
pequiv.MK2 (apn n f) (apn n f⁻¹ᵉ*)
|
||
abstract begin
|
||
induction n with n IH,
|
||
{ apply pleft_inv},
|
||
{ replace nat.succ n with n + 1,
|
||
rewrite [+apn_succ],
|
||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||
refine ap1_phomotopy IH ⬝* _,
|
||
apply ap1_pid}
|
||
end end
|
||
abstract begin
|
||
induction n with n IH,
|
||
{ apply pright_inv},
|
||
{ replace nat.succ n with n + 1,
|
||
rewrite [+apn_succ],
|
||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||
refine ap1_phomotopy IH ⬝* _,
|
||
apply ap1_pid}
|
||
end end
|
||
|
||
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
|
||
loopn_pequiv_loopn 1 f
|
||
|
||
definition to_pmap_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B)
|
||
: loopn_pequiv_loopn n f ~* apn n f :=
|
||
!to_pmap_pequiv_MK2
|
||
|
||
definition to_pinv_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B)
|
||
: (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* :=
|
||
!to_pinv_pequiv_MK2
|
||
|
||
definition loopn_pequiv_loopn_con (n : ℕ) (f : A ≃* B) (p q : Ω[n+1] A)
|
||
: loopn_pequiv_loopn (n+1) f (p ⬝ q) =
|
||
loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q :=
|
||
ap1_con (loopn_pequiv_loopn n f) p q
|
||
|
||
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
|
||
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
|
||
loopn_pequiv_loopn_con 0 f p q
|
||
|
||
definition loopn_pequiv_loopn_rfl (n : ℕ) (A : Type*) :
|
||
loopn_pequiv_loopn n (pequiv.refl A) ~* pequiv.refl (Ω[n] A) :=
|
||
begin
|
||
exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n,
|
||
end
|
||
|
||
definition loop_pequiv_loop_rfl (A : Type*) :
|
||
loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) :=
|
||
loopn_pequiv_loopn_rfl 1 A
|
||
|
||
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
|
||
ppmap A B →* ppmap A' B' :=
|
||
pmap.mk (λh, g ∘* h ∘* f)
|
||
abstract begin
|
||
fapply pmap_eq,
|
||
{ esimp, intro a, exact respect_pt g},
|
||
{ rewrite [▸*, ap_constant], apply idp_con}
|
||
end end
|
||
|
||
definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A :=
|
||
pequiv_of_pmap pinverse !is_equiv_eq_inverse
|
||
|
||
definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
|
||
pointed.MK A a ≃* pointed.MK A a' :=
|
||
pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id
|
||
|
||
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
|
||
pequiv.mk id !is_equiv_id idp
|
||
|
||
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
|
||
pointed equivalences -/
|
||
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
|
||
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
|
||
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ reflexivity},
|
||
{ esimp [pequiv.trans, pequiv.symm],
|
||
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
|
||
end
|
||
|
||
/- -- TODO
|
||
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
|
||
ppmap A B ≃* ppmap A' B' :=
|
||
pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*)
|
||
abstract begin
|
||
intro a, esimp, apply pmap_eq,
|
||
{ esimp, },
|
||
{ }
|
||
end end
|
||
abstract begin
|
||
|
||
end end
|
||
-/
|
||
|
||
/- properties of iterated loop space -/
|
||
variable (A)
|
||
definition loopn_succ_in (n : ℕ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact loop_pequiv_loop IH}
|
||
end
|
||
|
||
definition loopn_add (n m : ℕ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact loop_pequiv_loop IH}
|
||
end
|
||
|
||
definition loopn_succ_out (n : ℕ) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
|
||
by reflexivity
|
||
|
||
variable {A}
|
||
|
||
definition loopn_succ_in_con {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||
loopn_succ_in A (succ n) (p ⬝ q) =
|
||
loopn_succ_in A (succ n) p ⬝ loopn_succ_in A (succ n) q :=
|
||
!loop_pequiv_loop_con
|
||
|
||
definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
||
begin
|
||
intros, fapply pType_eq,
|
||
{ esimp, transitivity _,
|
||
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
|
||
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
|
||
{ esimp, apply con.left_inv}
|
||
end
|
||
|
||
definition loopn_space_loop_irrel (n : ℕ) (p : point A = point A)
|
||
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
|
||
calc
|
||
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in
|
||
... = Ω[n] (Ω[2] A) : loopn_loop_irrel
|
||
... = Ω[2+n] A : eq_of_pequiv !loopn_add
|
||
... = Ω[n+2] A : by rewrite [algebra.add.comm]
|
||
|
||
definition apn_succ_phomotopy_in (n : ℕ) (f : A →* B) :
|
||
loopn_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact !ap1_pcompose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_pcompose}
|
||
end
|
||
|
||
definition loopn_succ_in_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||
loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
|
||
!apn_succ_phomotopy_in
|
||
|
||
definition loopn_succ_in_inv_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||
Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):=
|
||
begin
|
||
apply pinv_right_phomotopy_of_phomotopy,
|
||
refine _ ⬝* !passoc⁻¹*,
|
||
apply phomotopy_pinv_left_of_phomotopy,
|
||
apply apn_succ_phomotopy_in
|
||
end
|
||
|
||
/- properties of ppmap, the pointed type of pointed maps -/
|
||
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
||
|
||
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
||
phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
|
||
|
||
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
|
||
pmap.mk (pcompose g) (eq_of_phomotopy (pcompose_pconst g))
|
||
|
||
definition is_pequiv_ppcompose_left [instance] [constructor] (g : B →* C) [H : is_equiv g] :
|
||
is_equiv (@ppcompose_left A B C g) :=
|
||
begin
|
||
fapply is_equiv.adjointify,
|
||
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
|
||
all_goals (intros f; esimp; apply eq_of_phomotopy),
|
||
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f)
|
||
~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
|
||
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||
... ~* f : pid_pcompose f },
|
||
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f)
|
||
~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
|
||
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||
... ~* f : pid_pcompose f }
|
||
end
|
||
|
||
definition pequiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||
pequiv_of_pmap (ppcompose_left g) _
|
||
|
||
definition ppcompose_right [constructor] (f : A →* B) : ppmap B C →* ppmap A C :=
|
||
pmap.mk (λg, g ∘* f) (eq_of_phomotopy (pconst_pcompose f))
|
||
|
||
definition pequiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
|
||
begin
|
||
fapply pequiv.MK,
|
||
{ exact ppcompose_right f },
|
||
{ exact ppcompose_right f⁻¹ᵉ* },
|
||
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
|
||
refine pwhisker_left g !pright_inv ⬝* !pcompose_pid, },
|
||
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
|
||
refine pwhisker_left g !pleft_inv ⬝* !pcompose_pid, },
|
||
end
|
||
|
||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||
pequiv_of_equiv
|
||
(calc Ω(ppmap A B) ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||
... ≃ (A →* Ω B) : pmap.sigma_char)
|
||
(by reflexivity)
|
||
|
||
definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
|
||
pmap.mk (λ(f : A →* B), f a) idp
|
||
|
||
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
|
||
pmap.mk (λ(f : A →* B), f a) idp
|
||
|
||
definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
|
||
begin
|
||
fapply pequiv.MK,
|
||
{ exact papply B tt },
|
||
{ exact pbool_pmap },
|
||
{ intro f, fapply pmap_eq,
|
||
{ intro b, cases b, exact !respect_pt⁻¹, reflexivity },
|
||
{ exact !con.left_inv⁻¹ }},
|
||
{ intro b, reflexivity },
|
||
end
|
||
|
||
definition papn_pt [constructor] (n : ℕ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) :=
|
||
pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst)
|
||
|
||
definition papn_fun [constructor] {n : ℕ} {A : Type*} (B : Type*) (p : Ω[n] A) :
|
||
ppmap A B →* Ω[n] B :=
|
||
papply _ p ∘* papn_pt n A B
|
||
|
||
|
||
end pointed
|