lean2/hott/types/pointed.hlean

1090 lines
42 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
The basic definitions are in init.pointed
-/
import .nat.basic ..arity ..prop_trunc
open is_trunc eq prod sigma nat equiv option is_equiv bool unit sigma.ops sum algebra
namespace pointed
variables {A B : Type}
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
pointed.mk idp
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
pointed.mk (f pt)
definition loop [reducible] [constructor] (A : Type*) : Type* :=
pointed.mk' (point A = point A)
definition loopn [reducible] : → Type* → Type*
| loopn 0 X := X
| loopn (n+1) X := loop (loopn n X)
notation `Ω` := loop
notation `Ω[`:95 n:0 `]`:0 := loopn n
namespace ops
-- this is in a separate namespace because it caused type class inference to loop in some places
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
H
end ops
definition is_trunc_loop [instance] [priority 1100] (A : Type*)
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
!is_trunc_eq
definition loopn_zero_eq [unfold_full] (A : Type*)
: Ω[0] A = A := rfl
definition loopn_succ_eq [unfold_full] (k : ) (A : Type*)
: Ω[succ k] A = Ω (Ω[k] A) := rfl
definition rfln [constructor] [reducible] {n : } {A : Type*} : Ω[n] A := pt
definition refln [constructor] [reducible] (n : ) (A : Type*) : Ω[n] A := pt
definition refln_eq_refl [unfold_full] (A : Type*) (n : ) : rfln = rfl :> Ω[succ n] A := rfl
definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ) : Type :=
Ω[n] (pointed.mk' A)
definition loop_mul {k : } {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A :=
begin cases k with k, exact mul, exact concat end
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
begin
cases A with A a, cases B with B b, esimp at *,
fapply apdt011 @pType.mk,
{ apply ua f},
{ rewrite [cast_ua, p]},
end
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
: Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B :=
by induction p; exact ⟨idp, idpo⟩
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
begin
fapply equiv.MK,
{ intro x, induction x with X x, exact ⟨X, x⟩},
{ intro x, induction x with X x, exact pointed.MK X x},
{ intro x, induction x with X x, reflexivity},
{ intro x, induction x with X x, reflexivity},
end
definition pType.eta_expand [constructor] (A : Type*) : Type* :=
pointed.MK A pt
definition add_point [constructor] (A : Type) : Type* :=
pointed.Mk (none : option A)
postfix `₊`:(max+1) := add_point
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
end pointed
namespace pointed
/- truncated pointed types -/
definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*}
(p : A = B :> Type) (q : Point A =[p] Point B) : A = B :=
begin
induction A with A HA a, induction B with B HB b, esimp at *,
induction q, esimp,
refine ap010 (ptrunctype.mk A) _ a,
exact !is_prop.elim
end
definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*)
: A = B :=
begin
cases pType_eq_elim p with q r,
exact ptrunctype_eq q r
end
definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A :=
trunctype.struct A
end pointed open pointed
namespace pointed
variables {A B C D : Type*} {f g h : A →* B}
/- categorical properties of pointed maps -/
definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
pointed.MK A a →* pointed.MK B (f a) :=
pmap.mk f idp
definition pid [constructor] [refl] (A : Type*) : A →* A :=
pmap.mk id idp
definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C :=
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
infixr ` ∘* `:60 := pcompose
definition passoc [constructor] (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
phomotopy.mk (λa, idp)
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end
definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
begin
fconstructor,
{ intro a, reflexivity},
{ reflexivity}
end
/- equivalences and equalities -/
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
begin
fapply equiv.MK : intros f,
{ exact ⟨f , respect_pt f⟩ },
all_goals cases f with f p,
{ exact pmap.mk f p },
all_goals reflexivity
end
definition pmap.eta_expand [constructor] {A B : Type*} (f : A →* B) : A →* B :=
pmap.mk f (pmap.resp_pt f)
definition pmap_equiv_right (A : Type*) (B : Type)
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro u a, exact pmap.to_fun u.2 a},
{ intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
intro a, esimp, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro u, cases u with b f, cases f with f p, esimp at *, induction p,
reflexivity}
end
/- some specific pointed maps -/
-- The constant pointed map between any two types
definition pconst [constructor] (A B : Type*) : A →* B :=
pmap.mk (λ a, Point B) idp
-- the pointed type of pointed maps
definition ppmap [constructor] (A B : Type*) : Type* :=
pType.mk (A →* B) (pconst A B)
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity)
definition pinverse [constructor] {X : Type*} : Ω X →* Ω X :=
pmap.mk eq.inverse idp
/-
we generalize the definition of ap1 to arbitrary paths, so that we can prove properties about it
using path induction (see for example ap1_gen_con and ap1_gen_con_natural)
-/
definition ap1_gen [reducible] [unfold 6 9 10] {A B : Type} (f : A → B) {a a' : A} (p : a = a')
{b b' : B} (q : f a = b) (q' : f a' = b') : b = b' :=
q⁻¹ ⬝ ap f p ⬝ q'
definition ap1_gen_idp [unfold 6] {A B : Type} (f : A → B) {a a' : A} (p : a = a') :
ap1_gen f p idp idp = ap f p :=
!con_idp ⬝ idp_con (ap f p)
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
begin
fconstructor,
{ intro p, exact (respect_pt f)⁻¹ ⬝ ap f p ⬝ respect_pt f },
{ esimp, apply con.left_inv}
end
definition apn (n : ) (f : A →* B) : Ω[n] A →* Ω[n] B :=
begin
induction n with n IH,
{ exact f},
{ esimp [loopn], exact ap1 IH}
end
notation `Ω→`:(max+5) := ap1
notation `Ω→[`:95 n:0 `]`:0 := apn n
definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
: B a →* B a' :=
pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
pointed.MK A a →* pointed.MK A a' :=
pmap.mk id p
definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A :=
pmap.mk (bool.rec pt a) idp
/- properties of pointed maps -/
definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp
definition apn_succ [unfold_full] (n : ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp
definition ap1_gen_con {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} (p₁ : a₁ = a₂) (p₂ : a₂ = a₃)
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) :
ap1_gen f (p₁ ⬝ p₂) q₁ q₃ = ap1_gen f p₁ q₁ q₂ ⬝ ap1_gen f p₂ q₂ q₃ :=
begin induction p₂, induction q₃, induction q₂, reflexivity end
definition ap1_gen_inv {A B : Type} (f : A → B) {a₁ a₂ : A} (p₁ : a₁ = a₂)
{b₁ b₂ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) :
ap1_gen f p₁⁻¹ q₂ q₁ = (ap1_gen f p₁ q₁ q₂)⁻¹ :=
begin induction p₁, induction q₁, induction q₂, reflexivity end
definition ap1_con {A B : Type*} (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
ap1_gen_con f p q (respect_pt f) (respect_pt f) (respect_pt f)
theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ :=
ap1_gen_inv f p (respect_pt f) (respect_pt f)
-- the following two facts is used for the suspension axiom to define spectrum cohomology
definition ap1_gen_con_natural {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {p₁ p₁' : a₁ = a₂}
{p₂ p₂' : a₂ = a₃}
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃)
(r₁ : p₁ = p₁') (r₂ : p₂ = p₂') :
square (ap1_gen_con f p₁ p₂ q₁ q₂ q₃)
(ap1_gen_con f p₁' p₂' q₁ q₂ q₃)
(ap (λp, ap1_gen f p q₁ q₃) (r₁ ◾ r₂))
(ap (λp, ap1_gen f p q₁ q₂) r₁ ◾ ap (λp, ap1_gen f p q₂ q₃) r₂) :=
begin induction r₁, induction r₂, exact vrfl end
definition ap1_gen_con_idp {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) :
ap1_gen_con f idp idp q q q ⬝ con.left_inv q ◾ con.left_inv q = con.left_inv q :=
by induction q; reflexivity
definition apn_con (n : ) (f : A →* B) (p q : Ω[n+1] A)
: apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q :=
ap1_con (apn n f) p q
definition apn_inv (n : ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ :=
ap1_inv (apn n f) p
definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
begin
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
apply is_equiv.homotopy_closed (ap f),
intro p, exact !idp_con⁻¹
end
definition is_equiv_apn (n : ) (f : A →* B) [H : is_equiv f]
: is_equiv (apn n f) :=
begin
induction n with n IH,
{ exact H},
{ exact is_equiv_ap1 (apn n f)}
end
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
: pinverse (p ⬝ q) = pinverse q ⬝ pinverse p :=
!con_inv
definition pinverse_inv [constructor] {X : Type*} (p : Ω X)
: pinverse p⁻¹ = (pinverse p)⁻¹ :=
idp
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
!is_equiv_cast
/- categorical properties of pointed homotopies -/
protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f :=
begin
fconstructor,
{ intro a, exact idp},
{ apply idp_con}
end
protected definition phomotopy.rfl [constructor] {f : A →* B} : f ~* f :=
phomotopy.refl f
protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h)
: f ~* h :=
phomotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (to_homotopy_pt q) ⬝ to_homotopy_pt p)
protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f :=
phomotopy.mk (λa, (p a)⁻¹) (inv_con_eq_of_eq_con (to_homotopy_pt p)⁻¹)
infix ` ⬝* `:75 := phomotopy.trans
postfix `⁻¹*`:(max+1) := phomotopy.symm
/- equalities and equivalences relating pointed homotopies -/
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B)
: (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ respect_pt g = respect_pt f :=
begin
fapply equiv.MK : intros h,
{ exact ⟨h , to_homotopy_pt h⟩ },
all_goals cases h with h p,
{ exact phomotopy.mk h p },
all_goals reflexivity
end
definition phomotopy.eta_expand [constructor] {A B : Type*} {f g : A →* B} (p : f ~* g) : f ~* g :=
phomotopy.mk p (phomotopy.homotopy_pt p)
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] :
is_trunc n (A →* B) :=
is_trunc_equiv_closed_rev _ !pmap.sigma_char
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
is_trunc n (ppmap A B) :=
!is_trunc_pmap
definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g :=
phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end
definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h)
: f ~* h :=
p ⬝* phomotopy_of_eq q
definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h)
: f ~* h :=
phomotopy_of_eq p ⬝* q
infix ` ⬝*p `:75 := pconcat_eq
infix ` ⬝p* `:75 := eq_pconcat
definition pmap_eq_equiv_internal {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
: eq_equiv_fn_eq pmap.sigma_char f g
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g),
pathover (λh, h pt = pt) (respect_pt f) p (respect_pt g)
: sigma_eq_equiv _ _
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap (λh, h pt) p ⬝ respect_pt g
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (respect_pt f)
(respect_pt g))
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), respect_pt f = ap10 p pt ⬝ respect_pt g
: sigma_equiv_sigma_right
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), respect_pt f = p pt ⬝ respect_pt g
: sigma_equiv_sigma_left' eq_equiv_homotopy
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ respect_pt g = respect_pt f
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ (f ~* g) : phomotopy.sigma_char f g
definition pmap_eq_equiv_internal_idp {A B : Type*} (f : A →* B) :
pmap_eq_equiv_internal f f idp = phomotopy.refl f :=
begin
apply ap (phomotopy.mk (homotopy.refl _)), induction B with B b₀, induction f with f f₀,
esimp at *, induction f₀, reflexivity
end
definition eq_of_phomotopy' (p : f ~* g) : f = g :=
to_inv (pmap_eq_equiv_internal f g) p
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
begin
refine equiv_change_fun (pmap_eq_equiv_internal f g) _,
{ apply phomotopy_of_eq },
{ intro p, induction p, exact pmap_eq_equiv_internal_idp f }
end
definition eq_of_phomotopy (p : f ~* g) : f = g :=
to_inv (pmap_eq_equiv f g) p
-- TODO: flip arguments in s
definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g :=
eq_of_phomotopy (phomotopy.mk r s⁻¹)
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
pmap_eq p !is_set.elim
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
begin
fapply equiv.MK,
{ intro f a, cases f with f p, exact f (some a)},
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity},
{ intro f, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
-- pmap_pbool_pequiv is the pointed equivalence
definition pmap_pbool_equiv [constructor] (B : Type*) : (pbool →* B) ≃ B :=
begin
fapply equiv.MK,
{ intro f, cases f with f p, exact f tt},
{ intro b, fconstructor,
intro u, cases u, exact pt, exact b,
reflexivity},
{ intro b, reflexivity},
{ intro f, cases f with f p, esimp, fapply pmap_eq,
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹},
{ esimp, exact !con.left_inv⁻¹}},
end
/-
Pointed maps respecting pointed homotopies.
In general we need function extensionality for pap,
but for particular F we can do it without function extensionality.
This is preferred, because such pointed homotopies compute
-/
definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g :=
phomotopy.mk (ap010 (λf, pmap.to_fun (F f)) (eq_of_phomotopy p))
begin cases eq_of_phomotopy p, apply idp_con end
definition ap1_phomotopy {f g : A →* B} (p : f ~* g)
: ap1 f ~* ap1 g :=
begin
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
esimp at *, induction q, induction pg,
fapply phomotopy.mk,
{ intro l, esimp, refine _ ⬝ !idp_con⁻¹ᵖ, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
apply ap_con_eq_con_ap},
{ induction A with A a, unfold [ap_con_eq_con_ap], generalize p a, generalize g a, intro b q,
induction q, reflexivity}
end
definition apn_phomotopy {f g : A →* B} (n : ) (p : f ~* g) : apn n f ~* apn n g :=
begin
induction n with n IH,
{ exact p},
{ exact ap1_phomotopy IH}
end
/- pointed homotopies between the given pointed maps -/
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
{ reflexivity}
end
definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ },
{ reflexivity}
end
definition ap1_pcompose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
begin
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
induction pg, induction pf,
fconstructor,
{ intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹},
{ reflexivity}
end
definition ap1_pcompose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
begin
fconstructor,
{ intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
refine whisker_right _ !ap_inv ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
exact !inv_inv⁻¹},
{ induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity},
end
definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
(r : p = q) : ptransport B p ~* ptransport B q :=
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
definition apn_pid [constructor] {A : Type*} (n : ) : apn n (pid A) ~* pid (Ω[n] A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap1_phomotopy IH ⬝* ap1_pid}
end
definition apn_pconst (A B : Type*) (n : ) :
apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) :=
begin
induction n with n IH,
{ reflexivity },
{ exact ap1_phomotopy IH ⬝* !ap1_pconst }
end
definition apn_pcompose (n : ) (g : B →* C) (f : A →* B) :
apn n (g ∘* f) ~* apn n g ∘* apn n f :=
begin
induction n with n IH,
{ reflexivity},
{ refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose}
end
definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A :=
by reflexivity
definition pinverse_pinverse (A : Type*) : pinverse ∘* pinverse ~* pid (Ω A) :=
begin
fapply phomotopy.mk,
{ apply inv_inv},
{ reflexivity}
end
definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) :
pcast (ap Ω p) ~* ap1 (pcast p) :=
begin
fapply phomotopy.mk,
{ intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹},
{ induction p, reflexivity}
end
definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) :=
begin
fapply phomotopy.mk,
{ intro a, esimp, apply idp_con},
{ reflexivity}
end
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
phomotopy.mk
begin induction p, reflexivity end
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
/- pointed equivalences -/
/- constructors / projections + variants -/
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
pequiv.mk f _ (respect_pt f)
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
pequiv.mk f _ H
protected definition pequiv.MK [constructor] (f : A →* B) (g : B → A)
(gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B :=
pequiv.mk f (adjointify f g fg gf) (respect_pt f)
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
equiv.mk f _
definition to_pinv [constructor] (f : A ≃* B) : B →* A :=
pmap.mk f⁻¹ ((ap f⁻¹ (respect_pt f))⁻¹ ⬝ left_inv f pt)
definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f)
: pequiv.to_pmap (pequiv_of_pmap f H) = f :=
by cases f; reflexivity
/-
A version of pequiv.MK with stronger conditions.
The advantage of defining a pointed equivalence with this definition is that there is a
pointed homotopy between the inverse of the resulting equivalence and the given pointed map g.
This is not the case when using `pequiv.MK` (if g is a pointed map),
that will only give an ordinary homotopy.
-/
protected definition pequiv.MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B :=
pequiv.MK f g gf fg
definition to_pmap_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK2 f g gf fg ~* f :=
phomotopy.mk (λb, idp) !idp_con
definition to_pinv_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A)
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK2 f g gf fg) ~* g :=
phomotopy.mk (λb, idp)
abstract [irreducible] begin
esimp,
note H := to_homotopy_pt gf, note H2 := to_homotopy_pt fg,
note H3 := eq_top_of_square (natural_square (to_homotopy fg) (respect_pt f)),
rewrite [▸* at *, H, H3, H2, ap_id, - +con.assoc, ap_compose' f g, con_inv,
- ap_inv, - +ap_con g],
apply whisker_right, apply ap02 g,
rewrite [ap_con, - + con.assoc, +ap_inv, +inv_con_cancel_right, con.left_inv],
end end
/- categorical properties of pointed equivalences -/
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
pequiv_of_pmap !pid !is_equiv_id
protected definition pequiv.rfl [constructor] : A ≃* A :=
pequiv.refl A
protected definition pequiv.symm [symm] [constructor] (f : A ≃* B) : B ≃* A :=
pequiv_of_pmap (to_pinv f) !is_equiv_inv
protected definition pequiv.trans [trans] [constructor] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
pequiv_of_pmap (g ∘* f) !is_equiv_compose
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
pequiv_of_pmap (g ∘* f) (is_equiv_compose g f)
infixr ` ∘*ᵉ `:60 := pequiv_compose
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
infix ` ⬝e* `:75 := pequiv.trans
/- more on pointed equivalences -/
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
: B a ≃* B a' :=
pequiv_of_pmap (ptransport B p) !is_equiv_tr
definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C)
: pequiv.to_pmap (f ⬝e* g) = g ∘* f :=
!to_pmap_pequiv_of_pmap
definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B :=
pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq)
definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f')
: A ≃* B :=
pequiv.MK f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq))
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
left_inv f a ▸ g (f a)
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv f) !respect_pt
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
pequiv_of_pmap (pcast p) !is_equiv_tr
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
p ⬝e* pequiv_of_eq q
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
pequiv_of_eq p ⬝e* q
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
pType_eq (equiv_of_pequiv p) !respect_pt
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
infix ` ⬝e*p `:75 := peconcat_eq
infix ` ⬝pe* `:75 := eq_peconcat
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
pcast_commute f p
definition pequiv.eta_expand [constructor] {A B : Type*} (f : A ≃* B) : A ≃* B :=
pequiv.mk f _ (pequiv.resp_pt f)
/-
the theorem pequiv_eq, which gives a condition for two pointed equivalences are equal
is in types.equiv to avoid circular imports
-/
/- computation rules of pointed homotopies, possibly combined with pointed equivalences -/
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
phomotopy.mk (λa, ap h (p a))
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con⁻¹ ⬝ ap02 _ (to_homotopy_pt p)) end
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
phomotopy.mk (λa, p (h a))
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con_eq_con_ap)⁻¹ ⬝ !con.assoc ⬝
whisker_left _ (to_homotopy_pt p) end
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
pwhisker_left _ p ⬝* pwhisker_right _ q
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
phomotopy.mk (left_inv f)
abstract begin
esimp, symmetry, apply con_inv_cancel_left
end end
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
phomotopy.mk (right_inv f)
abstract begin
induction f with f H p, esimp,
rewrite [ap_con, +ap_inv, -adj f, -ap_compose],
note q := natural_square (right_inv f) p,
rewrite [ap_id at q],
apply eq_bot_of_square,
exact q
end end
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
refine !passoc⁻¹* ⬝* _:
refine pwhisker_right _ (pleft_inv f) ⬝* _:
apply pid_pcompose
end
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
begin
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
refine !passoc ⬝* _:
refine pwhisker_left _ (pright_inv f) ⬝* _:
apply pcompose_pid
end
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pright_inv f) ⬝* _,
apply pcompose_pid
end
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
begin
refine _ ⬝* pwhisker_right _ p, symmetry,
refine !passoc ⬝* _,
refine pwhisker_left _ (pleft_inv f) ⬝* _,
apply pcompose_pid
end
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pleft_inv f) ⬝* _,
apply pid_pcompose
end
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
begin
refine _ ⬝* pwhisker_left _ p, symmetry,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (pright_inv f) ⬝* _,
apply pid_pcompose
end
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
definition pcompose2 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (p : f ~* f') (q : g ~* g') :
g ∘* f ~* g' ∘* f' :=
pwhisker_right f q ⬝* pwhisker_left g' p
infixr ` ◾* `:80 := pcompose2
definition phomotopy_pinv_of_phomotopy_pid {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : g ∘* f ~* pid A) : f ~* g⁻¹ᵉ* :=
phomotopy_pinv_left_of_phomotopy p ⬝* !pcompose_pid
definition phomotopy_pinv_of_phomotopy_pid' {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : f ∘* g ~* pid B) : f ~* g⁻¹ᵉ* :=
phomotopy_pinv_right_of_phomotopy p ⬝* !pid_pcompose
definition pinv_phomotopy_of_pid_phomotopy {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : pid A ~* g ∘* f) : g⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid p⁻¹*)⁻¹*
definition pinv_phomotopy_of_pid_phomotopy' {A B : Type*} {f : A →* B} {g : B ≃* A}
(p : pid B ~* f ∘* g) : g⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid' p⁻¹*)⁻¹*
definition pinv_pinv {A B : Type*} (f : A ≃* B) : (f⁻¹ᵉ*)⁻¹ᵉ* ~* f :=
(phomotopy_pinv_of_phomotopy_pid (pleft_inv f))⁻¹*
definition pinv2 {A B : Type*} {f f' : A ≃* B} (p : f ~* f') : f⁻¹ᵉ* ~* f'⁻¹ᵉ* :=
phomotopy_pinv_of_phomotopy_pid (pinv_right_phomotopy_of_phomotopy (!pid_pcompose ⬝* p)⁻¹*)
postfix [parsing_only] `⁻²*`:(max+10) := pinv2
definition trans_pinv {A B C : Type*} (f : A ≃* B) (g : B ≃* C) :
(f ⬝e* g)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g⁻¹ᵉ* :=
begin
refine (phomotopy_pinv_of_phomotopy_pid _)⁻¹*,
refine !passoc ⬝* _,
refine pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose) ⬝* _,
apply pright_inv
end
definition pinv_trans_pinv_left {A B C : Type*} (f : B ≃* A) (g : B ≃* C) :
(f⁻¹ᵉ* ⬝e* g)⁻¹ᵉ* ~* f ∘* g⁻¹ᵉ* :=
!trans_pinv ⬝* pwhisker_right _ !pinv_pinv
definition pinv_trans_pinv_right {A B C : Type*} (f : A ≃* B) (g : C ≃* B) :
(f ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g :=
!trans_pinv ⬝* pwhisker_left _ !pinv_pinv
definition pinv_trans_pinv_pinv {A B C : Type*} (f : B ≃* A) (g : C ≃* B) :
(f⁻¹ᵉ* ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f ∘* g :=
!trans_pinv ⬝* !pinv_pinv ◾* !pinv_pinv
definition pinv_pcompose_cancel_left {A B C : Type*} (g : B ≃* C) (f : A →* B) :
g⁻¹ᵉ* ∘* (g ∘* f) ~* f :=
!passoc⁻¹* ⬝* pwhisker_right f !pleft_inv ⬝* !pid_pcompose
definition pcompose_pinv_cancel_left {A B C : Type*} (g : C ≃* B) (f : A →* B) :
g ∘* (g⁻¹ᵉ* ∘* f) ~* f :=
!passoc⁻¹* ⬝* pwhisker_right f !pright_inv ⬝* !pid_pcompose
definition pinv_pcompose_cancel_right {A B C : Type*} (g : B →* C) (f : B ≃* A) :
(g ∘* f⁻¹ᵉ*) ∘* f ~* g :=
!passoc ⬝* pwhisker_left g !pleft_inv ⬝* !pcompose_pid
definition pcompose_pinv_cancel_right {A B C : Type*} (g : B →* C) (f : A ≃* B) :
(g ∘* f) ∘* f⁻¹ᵉ* ~* g :=
!passoc ⬝* pwhisker_left g !pright_inv ⬝* !pcompose_pid
/- pointed equivalences between particular pointed types -/
-- TODO: remove is_equiv_apn, which is proven again here
definition loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
pequiv.MK2 (apn n f) (apn n f⁻¹ᵉ*)
abstract begin
induction n with n IH,
{ apply pleft_inv},
{ replace nat.succ n with n + 1,
rewrite [+apn_succ],
refine !ap1_pcompose⁻¹* ⬝* _,
refine ap1_phomotopy IH ⬝* _,
apply ap1_pid}
end end
abstract begin
induction n with n IH,
{ apply pright_inv},
{ replace nat.succ n with n + 1,
rewrite [+apn_succ],
refine !ap1_pcompose⁻¹* ⬝* _,
refine ap1_phomotopy IH ⬝* _,
apply ap1_pid}
end end
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
loopn_pequiv_loopn 1 f
definition to_pmap_loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B)
: loopn_pequiv_loopn n f ~* apn n f :=
!to_pmap_pequiv_MK2
definition to_pinv_loopn_pequiv_loopn [constructor] (n : ) (f : A ≃* B)
: (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* :=
!to_pinv_pequiv_MK2
definition loopn_pequiv_loopn_con (n : ) (f : A ≃* B) (p q : Ω[n+1] A)
: loopn_pequiv_loopn (n+1) f (p ⬝ q) =
loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q :=
ap1_con (loopn_pequiv_loopn n f) p q
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
loopn_pequiv_loopn_con 0 f p q
definition loopn_pequiv_loopn_rfl (n : ) (A : Type*) :
loopn_pequiv_loopn n (pequiv.refl A) ~* pequiv.refl (Ω[n] A) :=
begin
exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n,
end
definition loop_pequiv_loop_rfl (A : Type*) :
loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) :=
loopn_pequiv_loopn_rfl 1 A
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
ppmap A B →* ppmap A' B' :=
pmap.mk (λh, g ∘* h ∘* f)
abstract begin
fapply pmap_eq,
{ esimp, intro a, exact respect_pt g},
{ rewrite [▸*, ap_constant], apply idp_con}
end end
definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A :=
pequiv_of_pmap pinverse !is_equiv_eq_inverse
definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
pointed.MK A a ≃* pointed.MK A a' :=
pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
pequiv.mk id !is_equiv_id idp
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
pointed equivalences -/
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ esimp [pequiv.trans, pequiv.symm],
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
end
/- -- TODO
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
ppmap A B ≃* ppmap A' B' :=
pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*)
abstract begin
intro a, esimp, apply pmap_eq,
{ esimp, },
{ }
end end
abstract begin
end end
-/
/- properties of iterated loop space -/
variable (A)
definition loopn_succ_in (n : ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact loop_pequiv_loop IH}
end
definition loopn_add (n m : ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
begin
induction n with n IH,
{ reflexivity},
{ exact loop_pequiv_loop IH}
end
definition loopn_succ_out (n : ) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
by reflexivity
variable {A}
definition loopn_succ_in_con {n : } (p q : Ω[succ (succ n)] A) :
loopn_succ_in A (succ n) (p ⬝ q) =
loopn_succ_in A (succ n) p ⬝ loopn_succ_in A (succ n) q :=
!loop_pequiv_loop_con
definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
begin
intros, fapply pType_eq,
{ esimp, transitivity _,
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
{ esimp, apply con.left_inv}
end
definition loopn_space_loop_irrel (n : ) (p : point A = point A)
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
calc
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in
... = Ω[n] (Ω[2] A) : loopn_loop_irrel
... = Ω[2+n] A : eq_of_pequiv !loopn_add
... = Ω[n+2] A : by rewrite [algebra.add.comm]
definition apn_succ_phomotopy_in (n : ) (f : A →* B) :
loopn_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
begin
induction n with n IH,
{ reflexivity},
{ exact !ap1_pcompose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_pcompose}
end
definition loopn_succ_in_natural {A B : Type*} (n : ) (f : A →* B) :
loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
!apn_succ_phomotopy_in
definition loopn_succ_in_inv_natural {A B : Type*} (n : ) (f : A →* B) :
Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):=
begin
apply pinv_right_phomotopy_of_phomotopy,
refine _ ⬝* !passoc⁻¹*,
apply phomotopy_pinv_left_of_phomotopy,
apply apn_succ_phomotopy_in
end
/- properties of ppmap, the pointed type of pointed maps -/
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
pmap.mk (pcompose g) (eq_of_phomotopy (pcompose_pconst g))
definition is_pequiv_ppcompose_left [instance] [constructor] (g : B →* C) [H : is_equiv g] :
is_equiv (@ppcompose_left A B C g) :=
begin
fapply is_equiv.adjointify,
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
all_goals (intros f; esimp; apply eq_of_phomotopy),
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f)
~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
... ~* f : pid_pcompose f },
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f)
~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
... ~* f : pid_pcompose f }
end
definition pequiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
pequiv_of_pmap (ppcompose_left g) _
definition ppcompose_right [constructor] (f : A →* B) : ppmap B C →* ppmap A C :=
pmap.mk (λg, g ∘* f) (eq_of_phomotopy (pconst_pcompose f))
definition pequiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
begin
fapply pequiv.MK,
{ exact ppcompose_right f },
{ exact ppcompose_right f⁻¹ᵉ* },
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
refine pwhisker_left g !pright_inv ⬝* !pcompose_pid, },
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
refine pwhisker_left g !pleft_inv ⬝* !pcompose_pid, },
end
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
pequiv_of_equiv
(calc Ω(ppmap A B) ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
... ≃ (A →* Ω B) : pmap.sigma_char)
(by reflexivity)
definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
begin
fapply pequiv.MK,
{ exact papply B tt },
{ exact pbool_pmap },
{ intro f, fapply pmap_eq,
{ intro b, cases b, exact !respect_pt⁻¹, reflexivity },
{ exact !con.left_inv⁻¹ }},
{ intro b, reflexivity },
end
definition papn_pt [constructor] (n : ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) :=
pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst)
definition papn_fun [constructor] {n : } {A : Type*} (B : Type*) (p : Ω[n] A) :
ppmap A B →* Ω[n] B :=
papply _ p ∘* papn_pt n A B
end pointed