lean2/library/algebra/ordered_ring.lean
2015-05-23 20:52:23 +10:00

587 lines
21 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Here an "ordered_ring" is partially ordered ring, which is ordered with respect to both a weak
order and an associated strict order. Our numeric structures (int, rat, and real) will be instances
of "linear_ordered_comm_ring". This development is modeled after Isabelle's library.
-/
import algebra.ordered_group algebra.ring
open eq eq.ops
namespace algebra
variable {A : Type}
definition absurd_a_lt_a {B : Type} {a : A} [s : strict_order A] (H : a < a) : B :=
absurd H (lt.irrefl a)
structure ordered_semiring [class] (A : Type)
extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance
semiring A, ordered_cancel_comm_monoid A, zero_ne_one_class A :=
(mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b))
(mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c))
(mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b))
(mul_lt_mul_of_pos_right: ∀a b c, lt a b → lt zero c → lt (mul a c) (mul b c))
section
variable [s : ordered_semiring A]
variables (a b c d e : A)
include s
theorem mul_le_mul_of_nonneg_left {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
c * a ≤ c * b := !ordered_semiring.mul_le_mul_of_nonneg_left Hab Hc
theorem mul_le_mul_of_nonneg_right {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
a * c ≤ b * c := !ordered_semiring.mul_le_mul_of_nonneg_right Hab Hc
-- TODO: there are four variations, depending on which variables we assume to be nonneg
theorem mul_le_mul {a b c d : A} (Hac : a ≤ c) (Hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) :
a * b ≤ c * d :=
calc
a * b ≤ c * b : mul_le_mul_of_nonneg_right Hac nn_b
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 :=
begin
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb,
rewrite zero_mul at H,
exact H
end
theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 :=
begin
have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha,
rewrite mul_zero at H,
exact H
end
theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 :=
begin
have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb,
rewrite zero_mul at H,
exact H
end
theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) :
c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc
theorem mul_lt_mul_of_pos_right {a b c : A} (Hab : a < b) (Hc : 0 < c) :
a * c < b * c := !ordered_semiring.mul_lt_mul_of_pos_right Hab Hc
-- TODO: once again, there are variations
theorem mul_lt_mul {a b c d : A} (Hac : a < c) (Hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) :
a * b < c * d :=
calc
a * b < c * b : mul_lt_mul_of_pos_right Hac pos_b
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 :=
begin
have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb,
rewrite zero_mul at H,
exact H
end
theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 :=
begin
have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha,
rewrite mul_zero at H,
exact H
end
theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 :=
begin
have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb,
rewrite zero_mul at H,
exact H
end
end
structure linear_ordered_semiring [class] (A : Type)
extends ordered_semiring A, linear_strong_order_pair A
section
variable [s : linear_ordered_semiring A]
variables {a b c : A}
include s
theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
lt_of_not_le
(assume H1 : b ≤ a,
have H2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left H1 Hc,
not_lt_of_le H2 H)
theorem lt_of_mul_lt_mul_right (H : a * c < b * c) (Hc : c ≥ 0) : a < b :=
lt_of_not_le
(assume H1 : b ≤ a,
have H2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right H1 Hc,
not_lt_of_le H2 H)
theorem le_of_mul_le_mul_left (H : c * a ≤ c * b) (Hc : c > 0) : a ≤ b :=
le_of_not_lt
(assume H1 : b < a,
have H2 : c * b < c * a, from mul_lt_mul_of_pos_left H1 Hc,
not_le_of_lt H2 H)
theorem le_of_mul_le_mul_right (H : a * c ≤ b * c) (Hc : c > 0) : a ≤ b :=
le_of_not_lt
(assume H1 : b < a,
have H2 : b * c < a * c, from mul_lt_mul_of_pos_right H1 Hc,
not_le_of_lt H2 H)
theorem pos_of_mul_pos_left (H : 0 < a * b) (H1 : 0 ≤ a) : 0 < b :=
lt_of_not_le
(assume H2 : b ≤ 0,
have H3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos H1 H2,
not_lt_of_le H3 H)
theorem pos_of_mul_pos_right (H : 0 < a * b) (H1 : 0 ≤ b) : 0 < a :=
lt_of_not_le
(assume H2 : a ≤ 0,
have H3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg H2 H1,
not_lt_of_le H3 H)
end
structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A, zero_ne_one_class A :=
(mul_nonneg : ∀a b, le zero a → le zero b → le zero (mul a b))
(mul_pos : ∀a b, lt zero a → lt zero b → lt zero (mul a b))
theorem ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A}
(Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b :=
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
assert H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1,
begin
rewrite mul_sub_left_distrib at H2,
exact (iff.mp !sub_nonneg_iff_le H2)
end
theorem ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A}
(Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c :=
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
assert H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc,
begin
rewrite mul_sub_right_distrib at H2,
exact (iff.mp !sub_nonneg_iff_le H2)
end
theorem ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A}
(Hab : a < b) (Hc : 0 < c) : c * a < c * b :=
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
assert H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1,
begin
rewrite mul_sub_left_distrib at H2,
exact (iff.mp !sub_pos_iff_lt H2)
end
theorem ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A}
(Hab : a < b) (Hc : 0 < c) : a * c < b * c :=
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
assert H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc,
begin
rewrite mul_sub_right_distrib at H2,
exact (iff.mp !sub_pos_iff_lt H2)
end
definition ordered_ring.to_ordered_semiring [instance] [coercion] [reducible] [s : ordered_ring A] :
ordered_semiring A :=
⦃ ordered_semiring, s,
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add.left_cancel A s,
add_right_cancel := @add.right_cancel A s,
le_of_add_le_add_left := @le_of_add_le_add_left A s,
mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left A s,
mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right A s,
mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left A s,
mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right A s ⦄
section
variable [s : ordered_ring A]
variables {a b c : A}
include s
theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b :=
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
assert H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc',
have H2 : -(c * b) ≤ -(c * a),
begin
rewrite [-*neg_mul_eq_neg_mul at H1],
exact H1
end,
iff.mp !neg_le_neg_iff_le H2
theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c :=
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
assert H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc',
have H2 : -(b * c) ≤ -(a * c),
begin
rewrite [-*neg_mul_eq_mul_neg at H1],
exact H1
end,
iff.mp !neg_le_neg_iff_le H2
theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b :=
begin
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonpos_right Ha Hb,
rewrite zero_mul at H,
exact H
end
theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b :=
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
assert H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc',
have H2 : -(c * b) < -(c * a),
begin
rewrite [-*neg_mul_eq_neg_mul at H1],
exact H1
end,
iff.mp !neg_lt_neg_iff_lt H2
theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c :=
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
assert H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc',
have H2 : -(b * c) < -(a * c),
begin
rewrite [-*neg_mul_eq_mul_neg at H1],
exact H1
end,
iff.mp !neg_lt_neg_iff_lt H2
theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b :=
begin
have H : 0 * b < a * b, from mul_lt_mul_of_neg_right Ha Hb,
rewrite zero_mul at H,
exact H
end
end
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
-- class instance
structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A
-- print fields linear_ordered_semiring
definition linear_ordered_ring.to_linear_ordered_semiring [instance] [coercion] [reducible]
[s : linear_ordered_ring A] :
linear_ordered_semiring A :=
⦃ linear_ordered_semiring, s,
mul_zero := mul_zero,
zero_mul := zero_mul,
add_left_cancel := @add.left_cancel A s,
add_right_cancel := @add.right_cancel A s,
le_of_add_le_add_left := @le_of_add_le_add_left A s,
mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left A s,
mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right A s,
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left A s,
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right A s,
le_total := linear_ordered_ring.le_total ⦄
structure linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_ring A, comm_monoid A
theorem linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_ordered_comm_ring A]
{a b : A} (H : a * b = 0) : a = 0 b = 0 :=
lt.by_cases
(assume Ha : 0 < a,
lt.by_cases
(assume Hb : 0 < b,
begin
have H1 : 0 < a * b, from mul_pos Ha Hb,
rewrite H at H1,
apply absurd_a_lt_a H1
end)
(assume Hb : 0 = b, or.inr (Hb⁻¹))
(assume Hb : 0 > b,
begin
have H1 : 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb,
rewrite H at H1,
apply absurd_a_lt_a H1
end))
(assume Ha : 0 = a, or.inl (Ha⁻¹))
(assume Ha : 0 > a,
lt.by_cases
(assume Hb : 0 < b,
begin
have H1 : 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb,
rewrite H at H1,
apply absurd_a_lt_a H1
end)
(assume Hb : 0 = b, or.inr (Hb⁻¹))
(assume Hb : 0 > b,
begin
have H1 : 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb,
rewrite H at H1,
apply absurd_a_lt_a H1
end))
-- Linearity implies no zero divisors. Doesn't need commutativity.
definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion] [reducible]
[s: linear_ordered_comm_ring A] : integral_domain A :=
⦃ integral_domain, s,
eq_zero_or_eq_zero_of_mul_eq_zero :=
@linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero A s ⦄
section
variable [s : linear_ordered_ring A]
variables (a b c : A)
include s
theorem mul_self_nonneg : a * a ≥ 0 :=
or.elim (le.total 0 a)
(assume H : a ≥ 0, mul_nonneg H H)
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1
theorem zero_lt_one : 0 < (1:A) := lt_of_le_of_ne zero_le_one zero_ne_one
theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
(a > 0 ∧ b > 0) (a < 0 ∧ b < 0) :=
lt.by_cases
(assume Ha : 0 < a,
lt.by_cases
(assume Hb : 0 < b, or.inl (and.intro Ha Hb))
(assume Hb : 0 = b,
begin
rewrite [-Hb at Hab, mul_zero at Hab],
apply absurd_a_lt_a Hab
end)
(assume Hb : b < 0,
absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb))))
(assume Ha : 0 = a,
begin
rewrite [-Ha at Hab, zero_mul at Hab],
apply absurd_a_lt_a Hab
end)
(assume Ha : a < 0,
lt.by_cases
(assume Hb : 0 < b,
absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb)))
(assume Hb : 0 = b,
begin
rewrite [-Hb at Hab, mul_zero at Hab],
apply absurd_a_lt_a Hab
end)
(assume Hb : b < 0, or.inr (and.intro Ha Hb)))
theorem gt_of_mul_lt_mul_neg_left {a b c : A} (H : c * a < c * b) (Hc : c ≤ 0) : a > b :=
have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc,
have H2 : -(c * b) < -(c * a), from iff.mp' (neg_lt_neg_iff_lt _ _) H,
have H3 : (-c) * b < (-c) * a, from calc
(-c) * b = - (c * b) : neg_mul_eq_neg_mul
... < -(c * a) : H2
... = (-c) * a : neg_mul_eq_neg_mul,
lt_of_mul_lt_mul_left H3 nhc
theorem zero_gt_neg_one : -1 < (0:A) :=
neg_zero ▸ (neg_lt_neg zero_lt_one)
end
/- TODO: Isabelle's library has all kinds of cancelation rules for the simplifier.
Search on mult_le_cancel_right1 in Rings.thy. -/
structure decidable_linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_comm_ring A,
decidable_linear_ordered_comm_group A
section
variable [s : decidable_linear_ordered_comm_ring A]
variables {a b c : A}
include s
definition sign (a : A) : A := lt.cases a 0 (-1) 0 1
theorem sign_of_neg (H : a < 0) : sign a = -1 := lt.cases_of_lt H
theorem sign_zero : sign 0 = (0:A) := lt.cases_of_eq rfl
theorem sign_of_pos (H : a > 0) : sign a = 1 := lt.cases_of_gt H
theorem sign_one : sign 1 = (1:A) := sign_of_pos zero_lt_one
theorem sign_neg_one : sign (-1) = -(1:A) := sign_of_neg (neg_neg_of_pos zero_lt_one)
theorem sign_sign (a : A) : sign (sign a) = sign a :=
lt.by_cases
(assume H : a > 0,
calc
sign (sign a) = sign 1 : by rewrite (sign_of_pos H)
... = 1 : by rewrite sign_one
... = sign a : by rewrite (sign_of_pos H))
(assume H : 0 = a,
calc
sign (sign a) = sign (sign 0) : by rewrite H
... = sign 0 : by rewrite sign_zero at {1}
... = sign a : by rewrite -H)
(assume H : a < 0,
calc
sign (sign a) = sign (-1) : by rewrite (sign_of_neg H)
... = -1 : by rewrite sign_neg_one
... = sign a : by rewrite (sign_of_neg H))
theorem pos_of_sign_eq_one (H : sign a = 1) : a > 0 :=
lt.by_cases
(assume H1 : 0 < a, H1)
(assume H1 : 0 = a,
begin
rewrite [-H1 at H, sign_zero at H],
apply absurd H zero_ne_one
end)
(assume H1 : 0 > a,
have H2 : -1 = 1, from (sign_of_neg H1)⁻¹ ⬝ H,
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
theorem eq_zero_of_sign_eq_zero (H : sign a = 0) : a = 0 :=
lt.by_cases
(assume H1 : 0 < a,
absurd (H⁻¹ ⬝ sign_of_pos H1) zero_ne_one)
(assume H1 : 0 = a, H1⁻¹)
(assume H1 : 0 > a,
have H2 : 0 = -1, from H⁻¹ ⬝ sign_of_neg H1,
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
absurd (H3⁻¹) zero_ne_one)
theorem neg_of_sign_eq_neg_one (H : sign a = -1) : a < 0 :=
lt.by_cases
(assume H1 : 0 < a,
have H2 : -1 = 1, from H⁻¹ ⬝ (sign_of_pos H1),
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
(assume H1 : 0 = a,
have H2 : (0:A) = -1,
begin
rewrite [-H1 at H, sign_zero at H],
exact H
end,
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
absurd (H3⁻¹) zero_ne_one)
(assume H1 : 0 > a, H1)
theorem sign_neg (a : A) : sign (-a) = -(sign a) :=
lt.by_cases
(assume H1 : 0 < a,
calc
sign (-a) = -1 : sign_of_neg (neg_neg_of_pos H1)
... = -(sign a) : by rewrite (sign_of_pos H1))
(assume H1 : 0 = a,
calc
sign (-a) = sign (-0) : by rewrite H1
... = sign 0 : by rewrite neg_zero
... = 0 : by rewrite sign_zero
... = -0 : by rewrite neg_zero
... = -(sign 0) : by rewrite sign_zero
... = -(sign a) : by rewrite -H1)
(assume H1 : 0 > a,
calc
sign (-a) = 1 : sign_of_pos (neg_pos_of_neg H1)
... = -(-1) : by rewrite neg_neg
... = -(sign a) : sign_of_neg H1)
theorem sign_mul (a b : A) : sign (a * b) = sign a * sign b :=
lt.by_cases
(assume z_lt_a : 0 < a,
lt.by_cases
(assume z_lt_b : 0 < b,
by rewrite [sign_of_pos z_lt_a, sign_of_pos z_lt_b,
sign_of_pos (mul_pos z_lt_a z_lt_b), one_mul])
(assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero])
(assume z_gt_b : 0 > b,
by rewrite [sign_of_pos z_lt_a, sign_of_neg z_gt_b,
sign_of_neg (mul_neg_of_pos_of_neg z_lt_a z_gt_b), one_mul]))
(assume z_eq_a : 0 = a, by rewrite [-z_eq_a, zero_mul, *sign_zero, zero_mul])
(assume z_gt_a : 0 > a,
lt.by_cases
(assume z_lt_b : 0 < b,
by rewrite [sign_of_neg z_gt_a, sign_of_pos z_lt_b,
sign_of_neg (mul_neg_of_neg_of_pos z_gt_a z_lt_b), mul_one])
(assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero])
(assume z_gt_b : 0 > b,
by rewrite [sign_of_neg z_gt_a, sign_of_neg z_gt_b,
sign_of_pos (mul_pos_of_neg_of_neg z_gt_a z_gt_b),
neg_mul_neg, one_mul]))
theorem abs_eq_sign_mul (a : A) : abs a = sign a * a :=
lt.by_cases
(assume H1 : 0 < a,
calc
abs a = a : abs_of_pos H1
... = 1 * a : by rewrite one_mul
... = sign a * a : by rewrite (sign_of_pos H1))
(assume H1 : 0 = a,
calc
abs a = abs 0 : by rewrite H1
... = 0 : by rewrite abs_zero
... = 0 * a : by rewrite zero_mul
... = sign 0 * a : by rewrite sign_zero
... = sign a * a : by rewrite H1)
(assume H1 : a < 0,
calc
abs a = -a : abs_of_neg H1
... = -1 * a : by rewrite neg_eq_neg_one_mul
... = sign a * a : by rewrite (sign_of_neg H1))
theorem eq_sign_mul_abs (a : A) : a = sign a * abs a :=
lt.by_cases
(assume H1 : 0 < a,
calc
a = abs a : abs_of_pos H1
... = 1 * abs a : by rewrite one_mul
... = sign a * abs a : by rewrite (sign_of_pos H1))
(assume H1 : 0 = a,
calc
a = 0 : H1⁻¹
... = 0 * abs a : by rewrite zero_mul
... = sign 0 * abs a : by rewrite sign_zero
... = sign a * abs a : by rewrite H1)
(assume H1 : a < 0,
calc
a = -(-a) : by rewrite neg_neg
... = -abs a : by rewrite (abs_of_neg H1)
... = -1 * abs a : by rewrite neg_eq_neg_one_mul
... = sign a * abs a : by rewrite (sign_of_neg H1))
theorem abs_dvd_iff_dvd (a b : A) : abs a b ↔ a b :=
abs.by_cases !iff.refl !neg_dvd_iff_dvd
theorem dvd_abs_iff (a b : A) : a abs b ↔ a b :=
abs.by_cases !iff.refl !dvd_neg_iff_dvd
theorem abs_mul (a b : A) : abs (a * b) = abs a * abs b :=
or.elim (le.total 0 a)
(assume H1 : 0 ≤ a,
or.elim (le.total 0 b)
(assume H2 : 0 ≤ b,
calc
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg H1 H2)
... = abs a * b : by rewrite (abs_of_nonneg H1)
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
(assume H2 : b ≤ 0,
calc
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonneg_of_nonpos H1 H2)
... = a * -b : by rewrite neg_mul_eq_mul_neg
... = abs a * -b : by rewrite (abs_of_nonneg H1)
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
(assume H1 : a ≤ 0,
or.elim (le.total 0 b)
(assume H2 : 0 ≤ b,
calc
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonpos_of_nonneg H1 H2)
... = -a * b : by rewrite neg_mul_eq_neg_mul
... = abs a * b : by rewrite (abs_of_nonpos H1)
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
(assume H2 : b ≤ 0,
calc
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg_of_nonpos_of_nonpos H1 H2)
... = -a * -b : by rewrite neg_mul_neg
... = abs a * -b : by rewrite (abs_of_nonpos H1)
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
theorem abs_mul_self (a : A) : abs a * abs a = a * a :=
abs.by_cases rfl !neg_mul_neg
end
/- TODO: Multiplication and one, starting with mult_right_le_one_le. -/
end algebra