34 lines
1.4 KiB
Text
34 lines
1.4 KiB
Text
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Floris van Doorn
|
||
|
||
import .basic .constructions
|
||
|
||
open eq eq.ops category functor natural_transformation category.ops prod category.product
|
||
|
||
namespace adjoint
|
||
--representable functor
|
||
|
||
definition foo {obC : Type} (C : category obC) : C ×c C ⇒ C ×c C := functor.id
|
||
|
||
definition Hom {obC : Type} (C : category obC) : Cᵒᵖ ×c C ⇒ type :=
|
||
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
|
||
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
|
||
(λ a, funext (λh, !id_left ⬝ !id_right))
|
||
(λ a b c g f, funext (λh,
|
||
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
||
--I'm lazy, waiting for automation to fill this
|
||
|
||
section
|
||
parameters {obC obD : Type} (C : category obC) {D : category obD}
|
||
|
||
-- Add auxiliary category instance needed by functor.compose at (Hom D ∘f sorry)
|
||
private definition aux_prod_cat [instance] : category (obD × obD) := prod_category (opposite.opposite D) D
|
||
|
||
definition adjoint (obC obD : Type) (C : category obC) (D : category obD) (F : C ⇒ D) (G : D ⇒ C) :=
|
||
natural_transformation (Hom D ∘f sorry)
|
||
--(Hom C ∘f sorry)
|
||
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
|
||
|
||
end
|
||
end adjoint
|