276771e6ca
TODO: prove the result is sorted, prove that l1 ~ l2 -> sort R l1 = sort R l2
49 lines
1.7 KiB
Text
49 lines
1.7 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module init.relation
|
||
Authors: Leonardo de Moura
|
||
-/
|
||
prelude
|
||
import init.logic
|
||
|
||
-- TODO(Leo): remove duplication between this file and algebra/relation.lean
|
||
-- We need some of the following definitions asap when "initializing" Lean.
|
||
|
||
variables {A B : Type} (R : B → B → Prop)
|
||
local infix `≺`:50 := R
|
||
|
||
definition reflexive := ∀x, x ≺ x
|
||
|
||
definition symmetric := ∀⦃x y⦄, x ≺ y → y ≺ x
|
||
|
||
definition transitive := ∀⦃x y z⦄, x ≺ y → y ≺ z → x ≺ z
|
||
|
||
definition equivalence := reflexive R ∧ symmetric R ∧ transitive R
|
||
|
||
definition total := ∀ x y, x ≺ y ∨ y ≺ x
|
||
|
||
definition mk_equivalence (r : reflexive R) (s : symmetric R) (t : transitive R) : equivalence R :=
|
||
and.intro r (and.intro s t)
|
||
|
||
definition irreflexive := ∀x, ¬ x ≺ x
|
||
|
||
definition anti_symmetric := ∀⦃x y⦄, x ≺ y → y ≺ x → x = y
|
||
|
||
definition empty_relation := λa₁ a₂ : A, false
|
||
|
||
definition subrelation (Q R : B → B → Prop) := ∀⦃x y⦄, Q x y → R x y
|
||
|
||
definition inv_image (f : A → B) : A → A → Prop :=
|
||
λa₁ a₂, f a₁ ≺ f a₂
|
||
|
||
theorem inv_image.trans (f : A → B) (H : transitive R) : transitive (inv_image R f) :=
|
||
λ (a₁ a₂ a₃ : A) (H₁ : inv_image R f a₁ a₂) (H₂ : inv_image R f a₂ a₃), H H₁ H₂
|
||
|
||
theorem inv_image.irreflexive (f : A → B) (H : irreflexive R) : irreflexive (inv_image R f) :=
|
||
λ (a : A) (H₁ : inv_image R f a a), H (f a) H₁
|
||
|
||
inductive tc {A : Type} (R : A → A → Prop) : A → A → Prop :=
|
||
| base : ∀a b, R a b → tc R a b
|
||
| trans : ∀a b c, tc R a b → tc R b c → tc R a c
|