203 lines
7.6 KiB
Text
203 lines
7.6 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Declaration of the pushout
|
|
-/
|
|
|
|
import .quotient cubical.square types.sigma
|
|
|
|
open quotient eq sum equiv equiv.ops is_trunc
|
|
|
|
namespace pushout
|
|
section
|
|
|
|
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|
|
|
local abbreviation A := BL + TR
|
|
inductive pushout_rel : A → A → Type :=
|
|
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
|
|
open pushout_rel
|
|
local abbreviation R := pushout_rel
|
|
|
|
definition pushout : Type := quotient R -- TODO: define this in root namespace
|
|
|
|
parameters {f g}
|
|
definition inl (x : BL) : pushout :=
|
|
class_of R (inl x)
|
|
|
|
definition inr (x : TR) : pushout :=
|
|
class_of R (inr x)
|
|
|
|
definition glue (x : TL) : inl (f x) = inr (g x) :=
|
|
eq_of_rel pushout_rel (Rmk f g x)
|
|
|
|
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
|
|
(y : pushout) : P y :=
|
|
begin
|
|
induction y,
|
|
{ cases a,
|
|
apply Pinl,
|
|
apply Pinr},
|
|
{ cases H, apply Pglue}
|
|
end
|
|
|
|
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
|
|
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
|
|
(Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y :=
|
|
rec Pinl Pinr Pglue y
|
|
|
|
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
|
|
(x : TL) : apdo (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
|
|
!rec_eq_of_rel
|
|
|
|
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
|
|
rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y
|
|
|
|
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
|
|
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
|
|
elim Pinl Pinr Pglue y
|
|
|
|
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
|
|
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
|
|
begin
|
|
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)),
|
|
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue],
|
|
end
|
|
|
|
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
|
|
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type :=
|
|
elim Pinl Pinr (λx, ua (Pglue x)) y
|
|
|
|
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
|
|
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
|
|
elim_type Pinl Pinr Pglue y
|
|
|
|
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
|
|
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
|
|
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
|
|
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
|
|
|
|
protected definition rec_hprop {P : pushout → Type} [H : Πx, is_hprop (P x)]
|
|
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) :=
|
|
rec Pinl Pinr (λx, !is_hprop.elimo) y
|
|
|
|
protected definition elim_hprop {P : Type} [H : is_hprop P] (Pinl : BL → P) (Pinr : TR → P)
|
|
(y : pushout) : P :=
|
|
elim Pinl Pinr (λa, !is_hprop.elim) y
|
|
|
|
end
|
|
end pushout
|
|
|
|
attribute pushout.inl pushout.inr [constructor]
|
|
attribute pushout.rec pushout.elim [unfold 10] [recursor 10]
|
|
attribute pushout.elim_type [unfold 9]
|
|
attribute pushout.rec_on pushout.elim_on [unfold 7]
|
|
attribute pushout.elim_type_on [unfold 6]
|
|
|
|
open sigma
|
|
|
|
namespace pushout
|
|
|
|
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|
|
|
/- The non-dependent universal property -/
|
|
definition pushout_arrow_equiv (C : Type)
|
|
: (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩},
|
|
{ intro v x, induction v with i w, induction w with j p, induction x,
|
|
exact (i a), exact (j a), exact (p x)},
|
|
{ intro v, induction v with i w, induction w with j p, esimp,
|
|
apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue},
|
|
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
|
|
apply eq_pathover, apply hdeg_square, esimp, apply elim_glue},
|
|
end
|
|
|
|
end pushout
|
|
|
|
open function sigma.ops
|
|
|
|
namespace pushout
|
|
|
|
/- The flattening lemma -/
|
|
section
|
|
|
|
universe variable u
|
|
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|
(Pinl : BL → Type.{u}) (Pinr : TR → Type.{u})
|
|
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x))
|
|
include Pglue
|
|
|
|
local abbreviation A := BL + TR
|
|
local abbreviation R : A → A → Type := pushout_rel f g
|
|
local abbreviation P [unfold 5] := pushout.elim_type Pinl Pinr Pglue
|
|
|
|
local abbreviation F : sigma (Pinl ∘ f) → sigma Pinl :=
|
|
λz, ⟨ f z.1 , z.2 ⟩
|
|
|
|
local abbreviation G : sigma (Pinl ∘ f) → sigma Pinr :=
|
|
λz, ⟨ g z.1 , Pglue z.1 z.2 ⟩
|
|
|
|
local abbreviation Pglue' : Π ⦃a a' : A⦄,
|
|
R a a' → sum.rec Pinl Pinr a ≃ sum.rec Pinl Pinr a' :=
|
|
@pushout_rel.rec TL BL TR f g
|
|
(λ ⦃a a' ⦄ (r : R a a'),
|
|
(sum.rec Pinl Pinr a) ≃ (sum.rec Pinl Pinr a')) Pglue
|
|
|
|
protected definition flattening : sigma P ≃ pushout F G :=
|
|
begin
|
|
assert H : Πz, P z ≃ quotient.elim_type (sum.rec Pinl Pinr) Pglue' z,
|
|
{ intro z, apply equiv_of_eq,
|
|
assert H1 : pushout.elim_type Pinl Pinr Pglue
|
|
= quotient.elim_type (sum.rec Pinl Pinr) Pglue',
|
|
{ change
|
|
quotient.rec (sum.rec Pinl Pinr)
|
|
(λa a' r, pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x))))
|
|
= quotient.rec (sum.rec Pinl Pinr)
|
|
(λa a' r, pathover_of_eq (ua (pushout_rel.cases_on r Pglue))),
|
|
assert H2 : Π⦃a a'⦄ r : pushout_rel f g a a',
|
|
pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x)))
|
|
= pathover_of_eq (ua (pushout_rel.cases_on r Pglue))
|
|
:> sum.rec Pinl Pinr a =[eq_of_rel (pushout_rel f g) r]
|
|
sum.rec Pinl Pinr a',
|
|
{ intros a a' r, cases r, reflexivity },
|
|
rewrite (eq_of_homotopy3 H2) },
|
|
apply ap10 H1 },
|
|
apply equiv.trans (sigma_equiv_sigma_id H),
|
|
apply equiv.trans (quotient.flattening.flattening_lemma R (sum.rec Pinl Pinr) Pglue'),
|
|
fapply equiv.MK,
|
|
{ intro q, induction q with z z z' fr,
|
|
{ induction z with a p, induction a with x x,
|
|
{ exact inl ⟨x, p⟩ },
|
|
{ exact inr ⟨x, p⟩ } },
|
|
{ induction fr with a a' r p, induction r with x,
|
|
exact glue ⟨x, p⟩ } },
|
|
{ intro q, induction q with xp xp xp,
|
|
{ exact class_of _ ⟨sum.inl xp.1, xp.2⟩ },
|
|
{ exact class_of _ ⟨sum.inr xp.1, xp.2⟩ },
|
|
{ apply eq_of_rel, constructor } },
|
|
{ intro q, induction q with xp xp xp: induction xp with x p,
|
|
{ apply ap inl, reflexivity },
|
|
{ apply ap inr, reflexivity },
|
|
{ unfold F, unfold G, apply eq_pathover,
|
|
rewrite [ap_id,ap_compose' (quotient.elim _ _)],
|
|
krewrite elim_glue, krewrite elim_eq_of_rel, apply hrefl } },
|
|
{ intro q, induction q with z z z' fr,
|
|
{ induction z with a p, induction a with x x,
|
|
{ reflexivity },
|
|
{ reflexivity } },
|
|
{ induction fr with a a' r p, induction r with x,
|
|
esimp, apply eq_pathover,
|
|
rewrite [ap_id,ap_compose' (pushout.elim _ _ _)],
|
|
krewrite elim_eq_of_rel, krewrite elim_glue, apply hrefl } }
|
|
end
|
|
end
|
|
|
|
end pushout
|