lean2/library/algebra/category/constructions.lean

270 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
-- This file contains basic constructions on categories, including common categories
import .basic
import data.unit data.sigma data.prod data.empty data.bool
open eq eq.ops prod
namespace category
section
open unit
definition category_one : category unit :=
mk (λa b, unit)
(λ a b c f g, star)
(λ a, star)
(λ a b c d f g h, !unit.equal)
(λ a b f, !unit.equal)
(λ a b f, !unit.equal)
end
section
variables {ob : Type} {C : category ob} {a b c : ob}
definition opposite (C : category ob) : category ob :=
mk (λa b, hom b a)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, symm !assoc)
(λ a b f, !id_right)
(λ a b f, !id_left)
--definition compose_opposite {C : category ob} {a b c : ob} {g : a => b} {f : b => c} : compose
precedence `∘op` : 60
infixr `∘op` := @compose _ (opposite _) _ _ _
theorem compose_op {f : @hom ob C a b} {g : hom b c} : f ∘op g = g ∘ f :=
rfl
theorem op_op {C : category ob} : opposite (opposite C) = C :=
category.rec (λ hom comp id assoc idl idr, refl (mk _ _ _ _ _ _)) C
end
definition Opposite (C : Category) : Category :=
Category.mk (objects C) (opposite (category_instance C))
section
definition type_category : category Type :=
mk (λa b, a → b)
(λ a b c, function.compose)
(λ a, function.id)
(λ a b c d h g f, symm (function.compose_assoc h g f))
(λ a b f, function.compose_id_left f)
(λ a b f, function.compose_id_right f)
end
section
open decidable unit empty
parameters (A : Type) {H : decidable_eq A}
private definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
private theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
private definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
decidable.rec_on
(H b c)
(λ Hbc g, decidable.rec_on
(H a b)
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
(λh f, empty.rec _ f) f)
(λh (g : empty), empty.rec _ g) g
definition set_category : category A :=
mk (λa b, set_hom a b)
(λ a b c g f, set_compose g f)
(λ a, rec_on_true rfl ⋆)
(λ a b c d h g f, subsingleton.elim _ _ _)
(λ a b f, subsingleton.elim _ _ _)
(λ a b f, subsingleton.elim _ _ _)
end
section
open bool
definition category_two := set_category bool
end
section cat_of_cat
definition category_of_categories : category Category :=
mk (λ a b, Functor a b)
(λ a b c g f, functor.Compose g f)
(λ a, functor.Id)
(λ a b c d h g f, !functor.Assoc)
(λ a b f, !functor.Id_left)
(λ a b f, !functor.Id_right)
end cat_of_cat
section product
open prod
definition product_category {obC obD : Type} (C : category obC) (D : category obD)
: category (obC × obD) :=
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id,id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod.equal !id_left !id_left )
(λ a b f, prod.equal !id_right !id_right)
end product
namespace ops
notation `Cat` := category_of_categories
notation `type` := type_category
notation 1 := category_one
postfix `ᵒᵖ`:max := opposite
infixr `×` := product_category
instance category_of_categories type_category category_one product_category
end ops
section functor_category
parameters {obC obD : Type} (C : category obC) (D : category obD)
definition functor_category : category (functor C D) :=
mk (λa b, natural_transformation a b)
(λ a b c g f, natural_transformation.compose g f)
(λ a, natural_transformation.id)
(λ a b c d h g f, !natural_transformation.assoc)
(λ a b f, !natural_transformation.id_left)
(λ a b f, !natural_transformation.id_right)
end functor_category
section
open sigma
definition slice_category [reducible] {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c) :=
mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a)
(λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
(show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a,
proof
calc
dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : !assoc
... = dpr2 b ∘ dpr1 f : {dpr2 g}
... = dpr2 a : {dpr2 f}
qed))
(λ a, dpair id !id_right)
(λ a b c d h g f, dpair_eq !assoc !proof_irrel)
(λ a b f, sigma.equal !id_left !proof_irrel)
(λ a b f, sigma.equal !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
end --remove
namespace slice
section --remove
open sigma category.ops --remove sigma
instance slice_category
parameters {ob : Type} (C : category ob)
definition forgetful (x : ob) : (slice_category C x) ⇒ C :=
functor.mk (λ a, dpr1 a)
(λ a b f, dpr1 f)
(λ a, rfl)
(λ a b c g f, rfl)
definition composition_functor {x y : ob} (h : x ⟶ y) : slice_category C x ⇒ slice_category C y :=
functor.mk (λ a, dpair (dpr1 a) (h ∘ dpr2 a))
(λ a b f, dpair (dpr1 f)
(calc
(h ∘ dpr2 b) ∘ dpr1 f = h ∘ (dpr2 b ∘ dpr1 f) : !assoc⁻¹
... = h ∘ dpr2 a : {dpr2 f}))
(λ a, rfl)
(λ a b c g f, dpair_eq rfl !proof_irrel)
-- the following definition becomes complicated
-- definition slice_functor : C ⇒ category_of_categories :=
-- functor.mk (λ a, Category.mk _ (slice_category C a))
-- (λ a b f, Functor.mk (composition_functor f))
-- (λ a, congr_arg Functor.mk
-- (congr_arg4_dep functor.mk
-- (funext (λx, sigma.equal rfl !id_left))
-- sorry
-- !proof_irrel
-- !proof_irrel))
-- (λ a b c g f, sorry)
end
end slice
section coslice
open sigma
definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom c b) :=
mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b)
(λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
(show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c,
proof
calc
(dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm !assoc
... = dpr1 g ∘ dpr2 b : {dpr2 f}
... = dpr2 c : {dpr2 g}
qed))
(λ a, dpair id !id_left)
(λ a b c d h g f, dpair_eq !assoc !proof_irrel)
(λ a b f, sigma.equal !id_left !proof_irrel)
(λ a b f, sigma.equal !id_right !proof_irrel)
-- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) :
-- coslice C c = opposite (slice (opposite C) c) :=
-- sorry
end coslice
section arrow
open sigma eq.ops
-- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob}
-- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2}
-- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2)
-- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 :=
-- calc
-- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc
-- ... = (h2 ∘ f2) ∘ g1 : {H2}
-- ... = h2 ∘ (f2 ∘ g1) : symm assoc
-- ... = h2 ∘ (h1 ∘ f1) : {H1}
-- ... = (h2 ∘ h1) ∘ f1 : assoc
-- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), hom a b) :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)) (h : hom (dpr2' a) (dpr2' b)),
-- dpr3 b ∘ g = h ∘ dpr3 a)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g))))
-- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left))))
-- (λ a b c d h g f, dtrip_eq2 assoc assoc !proof_irrel)
-- (λ a b f, trip.equal2 id_left id_left !proof_irrel)
-- (λ a b f, trip.equal2 id_right id_right !proof_irrel)
-- make these definitions private?
variables {ob : Type} {C : category ob}
protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b
variables {a b : arrow_obs ob C}
protected definition src (a : arrow_obs ob C) : ob := dpr1 a
protected definition dst (a : arrow_obs ob C) : ob := dpr2' a
protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := dpr3 a
protected definition arrow_hom (a b : arrow_obs ob C) : Type :=
Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a
protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := dpr1 m
protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := dpr2' m
protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a
:= dpr3 m
definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) :=
mk (λa b, arrow_hom a b)
(λ a b c g f, dpair (hom_src g ∘ hom_src f) (dpair (hom_dst g ∘ hom_dst f)
(show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a,
proof
calc
to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : !assoc
... = (hom_dst g ∘ to_hom b) ∘ hom_src f : {commute g}
... = hom_dst g ∘ (to_hom b ∘ hom_src f) : symm !assoc
... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : {commute f}
... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : !assoc
qed)
))
(λ a, dpair id (dpair id (!id_right ⬝ (symm !id_left))))
(λ a b c d h g f, dtrip_eq_ndep !assoc !assoc !proof_irrel)
(λ a b f, trip.equal_ndep !id_left !id_left !proof_irrel)
(λ a b f, trip.equal_ndep !id_right !id_right !proof_irrel)
end arrow
end category
-- definition foo
-- : category (sorry) :=
-- mk (λa b, sorry)
-- (λ a b c g f, sorry)
-- (λ a, sorry)
-- (λ a b c d h g f, sorry)
-- (λ a b f, sorry)
-- (λ a b f, sorry)