a69a4226c6
This is to be consistent with the order of the type square. These arguments are mostly implicit, with as most notable exception the square(over) fillers.
388 lines
21 KiB
Text
388 lines
21 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn, Jakob von Raumer
|
|
|
|
Cubes
|
|
-/
|
|
|
|
import .square
|
|
|
|
open equiv is_equiv sigma sigma.ops
|
|
|
|
namespace eq
|
|
|
|
inductive cube {A : Type} {a₀₀₀ : A} : Π{a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
|
|
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
|
|
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
|
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
|
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
|
(s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁)
|
|
(s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁)
|
|
(s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁)
|
|
(s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁)
|
|
(s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀)
|
|
(s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂), Type :=
|
|
idc : cube ids ids ids ids ids ids
|
|
|
|
variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A}
|
|
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
|
|
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
|
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
|
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
|
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
|
{s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
|
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
|
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
|
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
|
{s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
|
{b₁ b₂ b₃ b₄ : B}
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂)
|
|
|
|
definition idc [reducible] [constructor] := @cube.idc
|
|
definition idcube [reducible] [constructor] (a : A) := @cube.idc A a
|
|
|
|
variables (s₁₁₀ s₁₀₁)
|
|
definition refl1 : cube s₀₁₁ s₀₁₁ hrfl hrfl vrfl vrfl :=
|
|
by induction s₀₁₁; exact idc
|
|
|
|
definition refl2 : cube hrfl hrfl s₁₀₁ s₁₀₁ hrfl hrfl :=
|
|
by induction s₁₀₁; exact idc
|
|
|
|
definition refl3 : cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀ :=
|
|
by induction s₁₁₀; exact idc
|
|
|
|
variables {s₁₁₀ s₁₀₁}
|
|
definition rfl1 : cube s₀₁₁ s₀₁₁ hrfl hrfl vrfl vrfl := !refl1
|
|
|
|
definition rfl2 : cube hrfl hrfl s₁₀₁ s₁₀₁ hrfl hrfl := !refl2
|
|
|
|
definition rfl3 : cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀ := !refl3
|
|
|
|
-- Variables for composition
|
|
variables {a₄₀₀ a₄₀₂ a₄₂₀ a₄₂₂ a₀₄₀ a₀₄₂ a₂₄₀ a₂₄₂ a₀₀₄ a₀₂₄ a₂₀₄ a₂₂₄ : A}
|
|
{p₃₀₀ : a₂₀₀ = a₄₀₀} {p₃₀₂ : a₂₀₂ = a₄₀₂} {p₃₂₀ : a₂₂₀ = a₄₂₀} {p₃₂₂ : a₂₂₂ = a₄₂₂}
|
|
{p₄₀₁ : a₄₀₀ = a₄₀₂} {p₄₁₀ : a₄₀₀ = a₄₂₀} {p₄₁₂ : a₄₀₂ = a₄₂₂} {p₄₂₁ : a₄₂₀ = a₄₂₂}
|
|
{p₀₃₀ : a₀₂₀ = a₀₄₀} {p₀₃₂ : a₀₂₂ = a₀₄₂} {p₂₃₀ : a₂₂₀ = a₂₄₀} {p₂₃₂ : a₂₂₂ = a₂₄₂}
|
|
{p₀₄₁ : a₀₄₀ = a₀₄₂} {p₁₄₀ : a₀₄₀ = a₂₄₀} {p₁₄₂ : a₀₄₂ = a₂₄₂} {p₂₄₁ : a₂₄₀ = a₂₄₂}
|
|
{p₀₀₃ : a₀₀₂ = a₀₀₄} {p₀₂₃ : a₀₂₂ = a₀₂₄} {p₂₀₃ : a₂₀₂ = a₂₀₄} {p₂₂₃ : a₂₂₂ = a₂₂₄}
|
|
{p₀₁₄ : a₀₀₄ = a₀₂₄} {p₁₀₄ : a₀₀₄ = a₂₀₄} {p₁₂₄ : a₀₂₄ = a₂₂₄} {p₂₁₄ : a₂₀₄ = a₂₂₄}
|
|
{s₃₀₁ : square p₃₀₀ p₃₀₂ p₂₀₁ p₄₀₁} {s₃₁₀ : square p₂₁₀ p₄₁₀ p₃₀₀ p₃₂₀}
|
|
{s₃₁₂ : square p₂₁₂ p₄₁₂ p₃₀₂ p₃₂₂} {s₃₂₁ : square p₃₂₀ p₃₂₂ p₂₂₁ p₄₂₁}
|
|
{s₄₁₁ : square p₄₁₀ p₄₁₂ p₄₀₁ p₄₂₁}
|
|
{s₀₃₁ : square p₀₃₀ p₀₃₂ p₀₂₁ p₀₄₁} {s₁₃₀ : square p₀₃₀ p₂₃₀ p₁₂₀ p₁₄₀}
|
|
{s₁₃₂ : square p₀₃₂ p₂₃₂ p₁₂₂ p₁₄₂} {s₂₃₁ : square p₂₃₀ p₂₃₂ p₂₂₁ p₂₄₁}
|
|
{s₁₄₁ : square p₁₄₀ p₁₄₂ p₀₄₁ p₂₄₁}
|
|
{s₀₁₃ : square p₀₁₂ p₀₁₄ p₀₀₃ p₀₂₃} {s₁₀₃ : square p₁₀₂ p₁₀₄ p₀₀₃ p₂₀₃}
|
|
{s₁₂₃ : square p₁₂₂ p₁₂₄ p₀₂₃ p₂₂₃} {s₂₁₃ : square p₂₁₂ p₂₁₄ p₂₀₃ p₂₂₃}
|
|
{s₁₁₄ : square p₀₁₄ p₂₁₄ p₁₀₄ p₁₂₄}
|
|
(d : cube s₂₁₁ s₄₁₁ s₃₀₁ s₃₂₁ s₃₁₀ s₃₁₂)
|
|
(e : cube s₀₃₁ s₂₃₁ s₁₂₁ s₁₄₁ s₁₃₀ s₁₃₂)
|
|
(f : cube s₀₁₃ s₂₁₃ s₁₀₃ s₁₂₃ s₁₁₂ s₁₁₄)
|
|
|
|
/- Composition of Cubes -/
|
|
|
|
include c d
|
|
definition cube_concat1 : cube s₀₁₁ s₄₁₁ (s₁₀₁ ⬝h s₃₀₁) (s₁₂₁ ⬝h s₃₂₁) (s₁₁₀ ⬝v s₃₁₀) (s₁₁₂ ⬝v s₃₁₂) :=
|
|
by induction d; exact c
|
|
omit d
|
|
|
|
include e
|
|
definition cube_concat2 : cube (s₀₁₁ ⬝h s₀₃₁) (s₂₁₁ ⬝h s₂₃₁) s₁₀₁ s₁₄₁ (s₁₁₀ ⬝h s₁₃₀) (s₁₁₂ ⬝h s₁₃₂) :=
|
|
by induction e; exact c
|
|
omit e
|
|
|
|
include f
|
|
definition cube_concat3 : cube (s₀₁₁ ⬝v s₀₁₃) (s₂₁₁ ⬝v s₂₁₃) (s₁₀₁ ⬝v s₁₀₃) (s₁₂₁ ⬝v s₁₂₃) s₁₁₀ s₁₁₄ :=
|
|
by induction f; exact c
|
|
omit f c
|
|
|
|
definition eq_of_cube (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ =
|
|
whisker_square (eq_bot_of_square s₀₁₁) (eq_bot_of_square s₂₁₁) idp idp s₁₁₂ :=
|
|
by induction c; reflexivity
|
|
|
|
definition eq_of_deg12_cube {s s' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
|
(c : cube vrfl vrfl vrfl vrfl s s') : s = s' :=
|
|
by induction s; exact eq_of_cube c
|
|
|
|
definition square_pathover {A B : Type} {a a' : A} {b₁ b₂ b₃ b₄ : A → B}
|
|
{f₁ : b₁ ~ b₂} {f₂ : b₃ ~ b₄} {f₃ : b₁ ~ b₃} {f₄ : b₂ ~ b₄} {p : a = a'}
|
|
{q : square (f₁ a) (f₂ a) (f₃ a) (f₄ a)}
|
|
{r : square (f₁ a') (f₂ a') (f₃ a') (f₄ a')}
|
|
(s : cube (natural_square f₁ p) (natural_square f₂ p)
|
|
(natural_square f₃ p) (natural_square f₄ p) q r) : q =[p] r :=
|
|
by induction p; apply pathover_idp_of_eq; exact eq_of_deg12_cube s
|
|
|
|
-- a special case where the endpoints do not depend on `p`
|
|
definition square_pathover'
|
|
{f₁ : A → b₁ = b₂} {f₂ : A → b₃ = b₄} {f₃ : A → b₁ = b₃} {f₄ : A → b₂ = b₄}
|
|
{p : a = a'}
|
|
{q : square (f₁ a) (f₂ a) (f₃ a) (f₄ a)}
|
|
{r : square (f₁ a') (f₂ a') (f₃ a') (f₄ a')}
|
|
(s : cube (vdeg_square (ap f₁ p)) (vdeg_square (ap f₂ p))
|
|
(vdeg_square (ap f₃ p)) (vdeg_square (ap f₄ p)) q r) : q =[p] r :=
|
|
by induction p;apply pathover_idp_of_eq;exact eq_of_deg12_cube s
|
|
|
|
/- Transporting along a square -/
|
|
|
|
-- TODO: remove: they are defined again below
|
|
definition cube_transport110 {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
|
(p : s₁₁₀ = s₁₁₀') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀' s₁₁₂ :=
|
|
by induction p; exact c
|
|
|
|
definition cube_transport112 {s₁₁₂' : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
|
(p : s₁₁₂ = s₁₁₂') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂':=
|
|
by induction p; exact c
|
|
|
|
definition cube_transport011 {s₀₁₁' : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
|
(p : s₀₁₁ = s₀₁₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction p; exact c
|
|
|
|
definition cube_transport211 {s₂₁₁' : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
|
(p : s₂₁₁ = s₂₁₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction p; exact c
|
|
|
|
definition cube_transport101 {s₁₀₁' : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
|
(p : s₁₀₁ = s₁₀₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction p; exact c
|
|
|
|
definition cube_transport121 {s₁₂₁' : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
|
(p : s₁₂₁ = s₁₂₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' s₁₁₀ s₁₁₂ :=
|
|
by induction p; exact c
|
|
|
|
/- Each equality between squares leads to a cube which is degenerate in one
|
|
dimension. -/
|
|
|
|
definition deg1_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
|
cube s₁₁₀ s₁₁₀' hrfl hrfl vrfl vrfl :=
|
|
by induction p; exact rfl1
|
|
|
|
definition deg2_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
|
cube hrfl hrfl s₁₁₀ s₁₁₀' hrfl hrfl :=
|
|
by induction p; exact rfl2
|
|
|
|
definition deg3_cube {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (p : s₁₁₀ = s₁₁₀') :
|
|
cube vrfl vrfl vrfl vrfl s₁₁₀ s₁₁₀' :=
|
|
by induction p; exact rfl3
|
|
|
|
/- For each square of parralel equations, there are cubes where the square's
|
|
sides appear in a degenerated way and two opposite sides are ids's -/
|
|
|
|
section
|
|
variables {a₀ a₁ : A} {p₀₀ p₀₂ p₂₀ p₂₂ : a₀ = a₁} {s₁₀ : p₀₀ = p₂₀}
|
|
{s₁₂ : p₀₂ = p₂₂} {s₀₁ : p₀₀ = p₀₂} {s₂₁ : p₂₀ = p₂₂}
|
|
(sq : square s₁₀ s₁₂ s₀₁ s₂₁)
|
|
|
|
include sq
|
|
|
|
definition ids3_cube_of_square : cube (hdeg_square s₀₁)
|
|
(hdeg_square s₂₁) (hdeg_square s₁₀) (hdeg_square s₁₂) ids ids :=
|
|
by induction p₀₀; induction sq; apply idc
|
|
|
|
definition ids1_cube_of_square : cube ids ids
|
|
(vdeg_square s₁₀) (vdeg_square s₁₂) (hdeg_square s₀₁) (hdeg_square s₂₁) :=
|
|
by induction p₀₀; induction sq; apply idc
|
|
|
|
definition ids2_cube_of_square : cube (vdeg_square s₁₀) (vdeg_square s₁₂)
|
|
ids ids (vdeg_square s₀₁) (vdeg_square s₂₁) :=
|
|
by induction p₀₀; induction sq; apply idc
|
|
|
|
end
|
|
|
|
/- Cube fillers -/
|
|
|
|
section cube_fillers
|
|
variables (s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁)
|
|
|
|
definition cube_fill110 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ lid s₁₁₂ :=
|
|
begin
|
|
induction s₀₁₁, induction s₂₁₁,
|
|
let fillsq := square_fill_l (eq_of_vdeg_square s₁₀₁) (eq_of_vdeg_square s₁₂₁)
|
|
(eq_of_hdeg_square s₁₁₂),
|
|
apply sigma.mk,
|
|
apply cube_transport101 (left_inv (vdeg_square_equiv _ _) s₁₀₁),
|
|
apply cube_transport112 (left_inv (hdeg_square_equiv _ _) s₁₁₂),
|
|
apply cube_transport121 (left_inv (vdeg_square_equiv _ _) s₁₂₁),
|
|
apply ids1_cube_of_square, exact fillsq.2
|
|
end
|
|
|
|
definition cube_fill112 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ lid :=
|
|
begin
|
|
induction s₀₁₁, induction s₂₁₁,
|
|
let fillsq := square_fill_r (eq_of_vdeg_square s₁₀₁) (eq_of_vdeg_square s₁₂₁)
|
|
(eq_of_hdeg_square s₁₁₀),
|
|
apply sigma.mk,
|
|
apply cube_transport101 (left_inv (vdeg_square_equiv _ _) s₁₀₁),
|
|
apply cube_transport110 (left_inv (hdeg_square_equiv _ _) s₁₁₀),
|
|
apply cube_transport121 (left_inv (vdeg_square_equiv _ _) s₁₂₁),
|
|
apply ids1_cube_of_square, exact fillsq.2,
|
|
end
|
|
|
|
definition cube_fill011 : Σ lid, cube lid s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
begin
|
|
induction s₁₀₁, induction s₁₂₁,
|
|
let fillsq := square_fill_t (eq_of_vdeg_square s₂₁₁) (eq_of_vdeg_square s₁₁₀)
|
|
(eq_of_vdeg_square s₁₁₂),
|
|
apply sigma.mk,
|
|
apply cube_transport110 (left_inv (vdeg_square_equiv _ _) s₁₁₀),
|
|
apply cube_transport211 (left_inv (vdeg_square_equiv _ _) s₂₁₁),
|
|
apply cube_transport112 (left_inv (vdeg_square_equiv _ _) s₁₁₂),
|
|
apply ids2_cube_of_square, exact fillsq.2,
|
|
end
|
|
|
|
definition cube_fill211 : Σ lid, cube s₀₁₁ lid s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
begin
|
|
induction s₁₀₁, induction s₁₂₁,
|
|
let fillsq := square_fill_b (eq_of_vdeg_square s₀₁₁) (eq_of_vdeg_square s₁₁₀)
|
|
(eq_of_vdeg_square s₁₁₂),
|
|
apply sigma.mk,
|
|
apply cube_transport011 (left_inv (vdeg_square_equiv _ _) s₀₁₁),
|
|
apply cube_transport110 (left_inv (vdeg_square_equiv _ _) s₁₁₀),
|
|
apply cube_transport112 (left_inv (vdeg_square_equiv _ _) s₁₁₂),
|
|
apply ids2_cube_of_square, exact fillsq.2,
|
|
end
|
|
|
|
definition cube_fill101 : Σ lid, cube s₀₁₁ s₂₁₁ lid s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
begin
|
|
induction s₁₁₀, induction s₁₁₂,
|
|
let fillsq := square_fill_t (eq_of_hdeg_square s₁₂₁) (eq_of_hdeg_square s₀₁₁)
|
|
(eq_of_hdeg_square s₂₁₁),
|
|
apply sigma.mk,
|
|
apply cube_transport011 (left_inv (hdeg_square_equiv _ _) s₀₁₁),
|
|
apply cube_transport211 (left_inv (hdeg_square_equiv _ _) s₂₁₁),
|
|
apply cube_transport121 (left_inv (hdeg_square_equiv _ _) s₁₂₁),
|
|
apply ids3_cube_of_square, exact fillsq.2,
|
|
end
|
|
|
|
definition cube_fill121 : Σ lid, cube s₀₁₁ s₂₁₁ s₁₀₁ lid s₁₁₀ s₁₁₂ :=
|
|
begin
|
|
induction s₁₁₀, induction s₁₁₂,
|
|
let fillsq := square_fill_b (eq_of_hdeg_square s₁₀₁) (eq_of_hdeg_square s₀₁₁)
|
|
(eq_of_hdeg_square s₂₁₁),
|
|
apply sigma.mk,
|
|
apply cube_transport101 (left_inv (hdeg_square_equiv _ _) s₁₀₁),
|
|
apply cube_transport011 (left_inv (hdeg_square_equiv _ _) s₀₁₁),
|
|
apply cube_transport211 (left_inv (hdeg_square_equiv _ _) s₂₁₁),
|
|
apply ids3_cube_of_square, exact fillsq.2,
|
|
end
|
|
|
|
end cube_fillers
|
|
|
|
/- Apply a non-dependent function to an entire cube -/
|
|
|
|
include c
|
|
definition apc (f : A → B) :
|
|
cube (aps f s₀₁₁) (aps f s₂₁₁) (aps f s₁₀₁) (aps f s₁₂₁) (aps f s₁₁₀) (aps f s₁₁₂) :=
|
|
by cases c; exact idc
|
|
omit c
|
|
|
|
/- Transpose a cube (swap dimensions) -/
|
|
|
|
include c
|
|
definition transpose12 : cube s₁₀₁ s₁₂₁ s₀₁₁ s₂₁₁ (transpose s₁₁₀) (transpose s₁₁₂) :=
|
|
by cases c; exact idc
|
|
|
|
definition transpose13 : cube s₁₁₀ s₁₁₂ (transpose s₁₀₁) (transpose s₁₂₁) s₀₁₁ s₂₁₁ :=
|
|
by cases c; exact idc
|
|
|
|
definition transpose23 : cube (transpose s₀₁₁) (transpose s₂₁₁) (transpose s₁₁₀)
|
|
(transpose s₁₁₂) (transpose s₁₀₁) (transpose s₁₂₁) :=
|
|
by cases c; exact idc
|
|
omit c
|
|
|
|
/- Inverting a cube along one dimension -/
|
|
|
|
include c
|
|
definition cube_inverse1 : cube s₂₁₁ s₀₁₁ s₁₀₁⁻¹ʰ s₁₂₁⁻¹ʰ s₁₁₀⁻¹ᵛ s₁₁₂⁻¹ᵛ :=
|
|
by cases c; exact idc
|
|
|
|
definition cube_inverse2 : cube s₀₁₁⁻¹ʰ s₂₁₁⁻¹ʰ s₁₂₁ s₁₀₁ s₁₁₀⁻¹ʰ s₁₁₂⁻¹ʰ :=
|
|
by cases c; exact idc
|
|
|
|
definition cube_inverse3 : cube s₀₁₁⁻¹ᵛ s₂₁₁⁻¹ᵛ s₁₀₁⁻¹ᵛ s₁₂₁⁻¹ᵛ s₁₁₂ s₁₁₀ :=
|
|
by cases c; exact idc
|
|
omit c
|
|
|
|
definition eq_concat1 {s₀₁₁' : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} (r : s₀₁₁' = s₀₁₁)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction r; exact c
|
|
|
|
definition concat1_eq {s₂₁₁' : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₂₁₁ = s₂₁₁')
|
|
: cube s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction r; exact c
|
|
|
|
definition eq_concat2 {s₁₀₁' : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} (r : s₁₀₁' = s₁₀₁)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction r; exact c
|
|
|
|
definition concat2_eq {s₁₂₁' : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₂₁ = s₁₂₁')
|
|
: cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' s₁₁₀ s₁₁₂ :=
|
|
by induction r; exact c
|
|
|
|
definition eq_concat3 {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (r : s₁₁₀' = s₁₁₀)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀' s₁₁₂ :=
|
|
by induction r; exact c
|
|
|
|
definition concat3_eq {s₁₁₂' : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₁₂ = s₁₁₂')
|
|
: cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂' :=
|
|
by induction r; exact c
|
|
|
|
infix ` ⬝1 `:75 := cube_concat1
|
|
infix ` ⬝2 `:75 := cube_concat2
|
|
infix ` ⬝3 `:75 := cube_concat3
|
|
infixr ` ⬝p1 `:75 := eq_concat1
|
|
infixl ` ⬝1p `:75 := concat1_eq
|
|
infixr ` ⬝p2 `:75 := eq_concat2
|
|
infixl ` ⬝2p `:75 := concat2_eq
|
|
infixr ` ⬝p3 `:75 := eq_concat3
|
|
infixl ` ⬝3p `:75 := concat3_eq
|
|
|
|
definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁')
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁)
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁')
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁')
|
|
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁')
|
|
(c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁)
|
|
(c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
|
cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
|
by induction q; exact c
|
|
|
|
end eq
|