lean2/hott/homotopy/cylinder.hlean
Floris van Doorn 8db4676c46 feat(hott): various changes and additions in the HoTT library
Add more theorems about mapping cylinders, fibers, truncated 2-quotient, truncated univalence, pre/postcomposition with an iso in a precategory.

renamings: equiv.refl -> equiv.rfl and equiv_eq <-> equiv_eq'
2016-05-06 14:27:27 -07:00

143 lines
4.6 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of mapping cylinders
-/
import hit.quotient
open quotient eq sum equiv fiber
namespace cylinder
section
parameters {A B : Type} (f : A → B)
local abbreviation C := B + A
inductive cylinder_rel : C → C → Type :=
| Rmk : Π(a : A), cylinder_rel (inl (f a)) (inr a)
open cylinder_rel
local abbreviation R := cylinder_rel
definition cylinder := quotient cylinder_rel -- TODO: define this in root namespace
parameter {f}
definition base (b : B) : cylinder :=
class_of R (inl b)
definition top (a : A) : cylinder :=
class_of R (inr a)
definition seg (a : A) : base (f a) = top a :=
eq_of_rel cylinder_rel (Rmk f a)
protected definition rec {P : cylinder → Type}
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
(Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a) (x : cylinder) : P x :=
begin
induction x,
{ cases a,
apply Pbase,
apply Ptop},
{ cases H, apply Pseg}
end
protected definition rec_on [reducible] {P : cylinder → Type} (x : cylinder)
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
(Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a) : P x :=
rec Pbase Ptop Pseg x
theorem rec_seg {P : cylinder → Type}
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
(Pseg : Π(a : A), Pbase (f a) =[seg a] Ptop a)
(a : A) : apd (rec Pbase Ptop Pseg) (seg a) = Pseg a :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pbase : B → P) (Ptop : A → P)
(Pseg : Π(a : A), Pbase (f a) = Ptop a) (x : cylinder) : P :=
rec Pbase Ptop (λa, pathover_of_eq (Pseg a)) x
protected definition elim_on [reducible] {P : Type} (x : cylinder) (Pbase : B → P) (Ptop : A → P)
(Pseg : Π(a : A), Pbase (f a) = Ptop a) : P :=
elim Pbase Ptop Pseg x
theorem elim_seg {P : Type} (Pbase : B → P) (Ptop : A → P)
(Pseg : Π(a : A), Pbase (f a) = Ptop a)
(a : A) : ap (elim Pbase Ptop Pseg) (seg a) = Pseg a :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (seg a)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_seg],
end
protected definition elim_type (Pbase : B → Type) (Ptop : A → Type)
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) (x : cylinder) : Type :=
elim Pbase Ptop (λa, ua (Pseg a)) x
protected definition elim_type_on [reducible] (x : cylinder) (Pbase : B → Type) (Ptop : A → Type)
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) : Type :=
elim_type Pbase Ptop Pseg x
theorem elim_type_seg (Pbase : B → Type) (Ptop : A → Type)
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a)
(a : A) : transport (elim_type Pbase Ptop Pseg) (seg a) = Pseg a :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_seg];apply cast_ua_fn
end
end cylinder
attribute cylinder.base cylinder.top [constructor]
attribute cylinder.rec cylinder.elim [unfold 8] [recursor 8]
attribute cylinder.elim_type [unfold 7]
attribute cylinder.rec_on cylinder.elim_on [unfold 5]
attribute cylinder.elim_type_on [unfold 4]
namespace cylinder
open sigma sigma.ops
variables {A B : Type} (f : A → B)
/- cylinder as a dependent family -/
definition pr1 [unfold 4] : cylinder f → B :=
cylinder.elim id f (λa, idp)
definition fcylinder : B → Type := fiber (pr1 f)
definition cylinder_equiv_sigma_fcylinder [constructor] : cylinder f ≃ Σb, fcylinder f b :=
!sigma_fiber_equiv⁻¹ᵉ
variable {f}
definition fbase (b : B) : fcylinder f b :=
fiber.mk (base b) idp
definition ftop (a : A) : fcylinder f (f a) :=
fiber.mk (top a) idp
definition fseg (a : A) : fbase (f a) = ftop a :=
fiber_eq (seg a) !elim_seg⁻¹
-- set_option pp.notation false
-- -- The induction principle for the dependent mapping cylinder (TODO)
-- protected definition frec {P : Π(b), fcylinder f b → Type}
-- (Pbase : Π(b : B), P _ (fbase b)) (Ptop : Π(a : A), P _ (ftop a))
-- (Pseg : Π(a : A), Pbase (f a) =[fseg a] Ptop a) {b : B} (x : fcylinder f b) : P _ x :=
-- begin
-- cases x with x p, induction p,
-- induction x: esimp,
-- { apply Pbase},
-- { apply Ptop},
-- { esimp, --fapply fiber_pathover,
-- --refine pathover_of_pathover_ap P (λx, fiber.mk x idp),
-- exact sorry}
-- end
-- theorem frec_fseg {P : Π(b), fcylinder f b → Type}
-- (Pbase : Π(b : B), P _ (fbase b)) (Ptop : Π(a : A), P _ (ftop a))
-- (Pseg : Π(a : A), Pbase (f a) =[fseg a] Ptop a) (a : A)
-- : apd (cylinder.frec Pbase Ptop Pseg) (fseg a) = Pseg a :=
-- sorry
end cylinder