8db4676c46
Add more theorems about mapping cylinders, fibers, truncated 2-quotient, truncated univalence, pre/postcomposition with an iso in a precategory. renamings: equiv.refl -> equiv.rfl and equiv_eq <-> equiv_eq'
115 lines
3.3 KiB
Text
115 lines
3.3 KiB
Text
/-
|
|
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
The definition of pointed types. This file is here to avoid circularities in the import graph
|
|
-/
|
|
|
|
prelude
|
|
import init.trunc
|
|
|
|
open eq equiv is_equiv is_trunc
|
|
|
|
structure pointed [class] (A : Type) :=
|
|
(point : A)
|
|
|
|
structure pType :=
|
|
(carrier : Type)
|
|
(Point : carrier)
|
|
|
|
notation `Type*` := pType
|
|
|
|
namespace pointed
|
|
attribute pType.carrier [coercion]
|
|
variables {A : Type}
|
|
|
|
definition pt [reducible] [unfold 2] [H : pointed A] := point A
|
|
definition Point [reducible] [unfold 1] (A : Type*) := pType.Point A
|
|
abbreviation carrier [unfold 1] (A : Type*) := pType.carrier A
|
|
protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a
|
|
protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a
|
|
protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* :=
|
|
pType.mk A (point A)
|
|
definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A :=
|
|
pointed.mk (Point A)
|
|
|
|
end pointed
|
|
open pointed
|
|
|
|
section
|
|
universe variable u
|
|
structure ptrunctype (n : trunc_index) extends trunctype.{u} n, pType.{u}
|
|
|
|
definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (X : ptrunctype n)
|
|
: is_trunc n (ptrunctype.to_pType X) :=
|
|
trunctype.struct X
|
|
|
|
end
|
|
|
|
notation n `-Type*` := ptrunctype n
|
|
abbreviation pSet [parsing_only] := 0-Type*
|
|
notation `Set*` := pSet
|
|
|
|
namespace pointed
|
|
|
|
protected definition ptrunctype.mk' [constructor] (n : trunc_index)
|
|
(A : Type) [pointed A] [is_trunc n A] : n-Type* :=
|
|
ptrunctype.mk A _ pt
|
|
|
|
protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1)
|
|
protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1)
|
|
|
|
definition ptrunctype_of_trunctype [constructor] {n : trunc_index} (A : n-Type) (a : A) : n-Type* :=
|
|
ptrunctype.mk A _ a
|
|
|
|
definition ptrunctype_of_pType [constructor] {n : trunc_index} (A : Type*) (H : is_trunc n A)
|
|
: n-Type* :=
|
|
ptrunctype.mk A _ pt
|
|
|
|
definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* :=
|
|
ptrunctype.mk A _ a
|
|
|
|
definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* :=
|
|
ptrunctype.mk A _ pt
|
|
|
|
attribute ptrunctype._trans_of_to_pType ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2]
|
|
|
|
end pointed
|
|
|
|
/- pointed maps -/
|
|
structure pmap (A B : Type*) :=
|
|
(to_fun : A → B)
|
|
(resp_pt : to_fun (Point A) = Point B)
|
|
|
|
namespace pointed
|
|
abbreviation respect_pt [unfold 3] := @pmap.resp_pt
|
|
notation `map₊` := pmap
|
|
infix ` →* `:30 := pmap
|
|
attribute pmap.to_fun [coercion]
|
|
end pointed open pointed
|
|
|
|
/- pointed homotopies -/
|
|
structure phomotopy {A B : Type*} (f g : A →* B) :=
|
|
(homotopy : f ~ g)
|
|
(homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f)
|
|
|
|
namespace pointed
|
|
variables {A B : Type*} {f g : A →* B}
|
|
|
|
infix ` ~* `:50 := phomotopy
|
|
abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt
|
|
abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a :=
|
|
phomotopy.homotopy p
|
|
|
|
/- pointed equivalences -/
|
|
structure pequiv (A B : Type*) extends equiv A B, pmap A B
|
|
|
|
attribute pequiv._trans_of_to_pmap pequiv._trans_of_to_equiv pequiv.to_pmap pequiv.to_equiv
|
|
[unfold 3]
|
|
|
|
infix ` ≃* `:25 := pequiv
|
|
attribute pequiv.to_pmap [coercion]
|
|
attribute pequiv.to_is_equiv [instance]
|
|
|
|
end pointed
|