64 lines
1.6 KiB
Text
64 lines
1.6 KiB
Text
-- Test [light] annotation
|
||
-- Remark: it will take some additional work to get ⁻¹ to rewrite well
|
||
-- when there is a proof obligation.
|
||
import algebra.ring algebra.field data.set data.finset
|
||
open algebra
|
||
attribute neg [light 3]
|
||
attribute inv [light 3]
|
||
|
||
attribute add.right_inv [simp]
|
||
attribute add_neg_cancel_left [simp]
|
||
|
||
attribute mul.right_inv [simp]
|
||
attribute mul_inv_cancel_left [simp]
|
||
|
||
open simplifier.unit simplifier.ac
|
||
|
||
namespace ag
|
||
universe l
|
||
constants (A : Type.{l}) (s1 : add_comm_group A) (s2 : has_one A)
|
||
attribute s1 [instance]
|
||
attribute s2 [instance]
|
||
constants (x y z w v : A)
|
||
|
||
#simplify eq env 0 x + y + - x + -y + z + -z
|
||
#simplify eq env 0 -100 + -v + -v + x + -v + y + - x + -y + z + -z + v + v + v + 100
|
||
end ag
|
||
|
||
namespace mg
|
||
universe l
|
||
constants (A : Type.{l}) (s1 : comm_group A) (s2 : has_add A)
|
||
attribute s1 [instance]
|
||
attribute s2 [instance]
|
||
constants (x y z w v : A)
|
||
|
||
#simplify eq env 0 x⁻¹ * y⁻¹ * z⁻¹ * 100⁻¹ * x * y * z * 100
|
||
|
||
end mg
|
||
|
||
namespace s
|
||
open set
|
||
universe l
|
||
constants (A : Type.{l}) (x y z v w : set A)
|
||
attribute compl [light 2]
|
||
|
||
-- TODO(dhs, leo): Where do we put this group of simp rules?
|
||
attribute union_compl_self [simp]
|
||
lemma union_comp_self_left [simp] {X : Type} (s t : set X) : s ∪ (-s ∪ t)= univ := sorry
|
||
|
||
attribute union_comm [simp]
|
||
attribute union_assoc [simp]
|
||
attribute union_left_comm [simp]
|
||
|
||
#simplify eq env 0 x ∪ y ∪ z ∪ -x
|
||
|
||
attribute inter_compl_self [simp]
|
||
lemma inter_compl_self_left [simp] {X : Type} (s t : set X) : s ∩ (-s ∩ t)= empty := sorry
|
||
|
||
attribute inter_comm [simp]
|
||
attribute inter_assoc [simp]
|
||
attribute inter_left_comm [simp]
|
||
|
||
#simplify eq env 0 x ∩ y ∩ z ∩ -x
|
||
|
||
end s
|