lean2/library/data/finset/partition.lean

126 lines
5.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Haitao Zhang
Partitions of a type A into finite subsets of A. Such a partition is represented by
a function f : A → finset A which maps every element a : A to its equivalence class.
-/
import .card
open function eq.ops
variable {A : Type}
variable [deceqA : decidable_eq A]
include deceqA
namespace finset
definition is_partition (f : A → finset A) := ∀ a b, a ∈ f b = (f a = f b)
structure partition : Type :=
(set : finset A) (part : A → finset A) (is_part : is_partition part)
(complete : set = Union set part)
attribute partition.part [coercion]
namespace partition
definition equiv_classes (f : partition) : finset (finset A) :=
image (partition.part f) (partition.set f)
lemma equiv_class_disjoint (f : partition) (a1 a2 : finset A) (Pa1 : a1 ∈ equiv_classes f)
(Pa2 : a2 ∈ equiv_classes f) :
a1 ≠ a2 → a1 ∩ a2 = ∅ :=
assume Pne,
assert Pe1 : _, from exists_of_mem_image Pa1, obtain g1 Pg1, from Pe1,
assert Pe2 : _, from exists_of_mem_image Pa2, obtain g2 Pg2, from Pe2,
begin
apply inter_eq_empty_of_disjoint,
apply disjoint.intro,
rewrite [eq.symm (and.right Pg1), eq.symm (and.right Pg2)],
intro x,
rewrite [*partition.is_part f],
intro Pxg1, rewrite [Pxg1, and.right Pg1, and.right Pg2],
intro Pe, exact absurd Pe Pne
end
theorem class_equation (f : @partition A _) :
card (partition.set f) = nat.Sum (equiv_classes f) card :=
let s := (partition.set f), p := (partition.part f), img := image p s in
calc
card s = card (Union s p) : partition.complete f
... = card (Union img id) : image_eq_Union_index_image s p
... = card (Union (equiv_classes f) id) : rfl
... = nat.Sum (equiv_classes f) card : card_Union_of_disjoint _ id (equiv_class_disjoint f)
lemma equiv_class_refl {f : A → finset A} (Pequiv : is_partition f) : ∀ a, a ∈ f a :=
take a, by rewrite [Pequiv a a]
-- make it a little easier to prove union from restriction
lemma restriction_imp_union {s : finset A} (f : A → finset A) (Pequiv : is_partition f)
(Psub : ∀{a}, a ∈ s → f a ⊆ s) :
s = Union s f :=
ext (take a, iff.intro
(assume Pains,
begin
rewrite [(Union_insert_of_mem f Pains)⁻¹, Union_insert],
apply mem_union_l, exact equiv_class_refl Pequiv a
end)
(assume Painu,
have Pclass : ∃ x, x ∈ s ∧ a ∈ f x,
from iff.elim_left (mem_Union_iff s f _) Painu,
obtain x Px, from Pclass,
have Pfx : f x ⊆ s, from Psub (and.left Px),
mem_of_subset_of_mem Pfx (and.right Px)))
lemma binary_union (P : A → Prop) [decP : decidable_pred P] {S : finset A} :
S = {a ∈ S | P a} {a ∈ S | ¬(P a)} :=
ext take a, iff.intro
(assume Pin, decidable.by_cases
(λ Pa : P a, mem_union_l (mem_filter_of_mem Pin Pa))
(λ nPa, mem_union_r (mem_filter_of_mem Pin nPa)))
(assume Pinu, or.elim (mem_or_mem_of_mem_union Pinu)
(assume Pin, mem_of_mem_filter Pin)
(assume Pin, mem_of_mem_filter Pin))
lemma binary_inter_empty {P : A → Prop} [decP : decidable_pred P] {S : finset A} :
{a ∈ S | P a} ∩ {a ∈ S | ¬(P a)} = ∅ :=
inter_eq_empty (take a, assume Pa nPa, absurd (of_mem_filter Pa) (of_mem_filter nPa))
definition disjoint_sets (S : finset (finset A)) : Prop :=
∀ s₁ s₂ (P₁ : s₁ ∈ S) (P₂ : s₂ ∈ S), s₁ ≠ s₂ → s₁ ∩ s₂ = ∅
lemma disjoint_sets_filter_of_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} :
disjoint_sets S → disjoint_sets {s ∈ S | P s} :=
assume Pds, take s₁ s₂, assume P₁ P₂, Pds s₁ s₂ (mem_of_mem_filter P₁) (mem_of_mem_filter P₂)
lemma binary_inter_empty_Union_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} :
disjoint_sets S → Union {s ∈ S | P s} id ∩ Union {s ∈ S | ¬P s} id = ∅ :=
assume Pds, inter_eq_empty (take a, assume Pa nPa,
obtain s Psin Pains, from iff.elim_left !mem_Union_iff Pa,
obtain t Ptin Paint, from iff.elim_left !mem_Union_iff nPa,
assert Pneq : s ≠ t,
from assume Peq, absurd (Peq ▸ of_mem_filter Psin) (of_mem_filter Ptin),
Pds s t (mem_of_mem_filter Psin) (mem_of_mem_filter Ptin) Pneq ▸ mem_inter Pains Paint)
section
variables {B: Type} [deceqB : decidable_eq B]
include deceqB
lemma binary_Union (f : A → finset B) {P : A → Prop} [decP : decidable_pred P] {s : finset A} :
Union s f = Union {a ∈ s | P a} f Union {a ∈ s | ¬P a} f :=
begin rewrite [binary_union P at {1}], apply Union_union, exact binary_inter_empty end
end
open nat
lemma card_binary_Union_disjoint_sets (P : finset A → Prop) [decP : decidable_pred P] {S : finset (finset A)} :
disjoint_sets S → Sum S card = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card :=
assume Pds, calc
Sum S card = card (Union S id) : card_Union_of_disjoint S id Pds
... = card (Union {s ∈ S | P s} id Union {s ∈ S | ¬P s} id) : binary_Union
... = card (Union {s ∈ S | P s} id) + card (Union {s ∈ S | ¬P s} id) : card_union_of_disjoint (binary_inter_empty_Union_disjoint_sets Pds)
... = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card : by rewrite [*(card_Union_of_disjoint _ id (disjoint_sets_filter_of_disjoint_sets Pds))]
end partition
end finset