37 lines
1.4 KiB
Text
37 lines
1.4 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Authors: Jeremy Avigad
|
||
|
||
-- logic.connectives.identities
|
||
-- ============================
|
||
|
||
-- Useful logical identities. In the absence of propositional extensionality, some of the
|
||
-- calculations use the type class support provided by logic.connectives.instances
|
||
|
||
import logic.core.instances
|
||
|
||
using relation
|
||
|
||
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
||
calc
|
||
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _
|
||
... ↔ a ∨ (c ∨ b) : {or_comm b c}
|
||
... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _)
|
||
|
||
theorem or_left_comm (a b c : Prop) : a ∨ (b ∨ c)↔ b ∨ (a ∨ c) :=
|
||
calc
|
||
a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff_symm (or_assoc _ _ _)
|
||
... ↔ (b ∨ a) ∨ c : {or_comm a b}
|
||
... ↔ b ∨ (a ∨ c) : or_assoc _ _ _
|
||
|
||
theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
|
||
calc
|
||
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and_assoc _ _ _
|
||
... ↔ a ∧ (c ∧ b) : {and_comm b c}
|
||
... ↔ (a ∧ c) ∧ b : iff_symm (and_assoc _ _ _)
|
||
|
||
theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
|
||
calc
|
||
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff_symm (and_assoc _ _ _)
|
||
... ↔ (b ∧ a) ∧ c : {and_comm a b}
|
||
... ↔ b ∧ (a ∧ c) : and_assoc _ _ _
|