105 lines
4 KiB
Text
105 lines
4 KiB
Text
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Jakob von Raumer
|
||
-- Ported from Coq HoTT
|
||
import hott.axioms.ua hott.equiv hott.equiv_precomp hott.funext_varieties
|
||
import data.prod data.sigma data.unit
|
||
|
||
open path function prod sigma truncation Equiv unit
|
||
|
||
-- First, define an axiom free variant of Univalence
|
||
definition ua_type := Π (A B : Type), IsEquiv (equiv_path A B)
|
||
|
||
context
|
||
parameters {ua : ua_type}
|
||
|
||
-- TODO base this theorem on UA instead of FunExt.
|
||
-- IsEquiv.postcompose relies on FunExt!
|
||
protected theorem ua_isequiv_postcompose {A B C : Type} {w : A → B} {H0 : IsEquiv w}
|
||
: IsEquiv (@compose C A B w) :=
|
||
!IsEquiv.postcompose
|
||
|
||
-- We are ready to prove functional extensionality,
|
||
-- starting with the naive non-dependent version.
|
||
protected definition diagonal [reducible] (B : Type) : Type
|
||
:= Σ xy : B × B, pr₁ xy ≈ pr₂ xy
|
||
|
||
protected definition isequiv_src_compose {A B C : Type}
|
||
: @IsEquiv (A → diagonal B)
|
||
(A → B)
|
||
(compose (pr₁ ∘ dpr1))
|
||
:= @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1)
|
||
(IsEquiv.adjointify (pr₁ ∘ dpr1)
|
||
(λ x, dpair (x , x) idp) (λx, idp)
|
||
(λ x, sigma.rec_on x
|
||
(λ xy, prod.rec_on xy
|
||
(λ b c p, path.rec_on p idp))))
|
||
|
||
protected definition isequiv_tgt_compose {A B C : Type}
|
||
: @IsEquiv (A → diagonal B)
|
||
(A → B)
|
||
(compose (pr₂ ∘ dpr1))
|
||
:= @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1)
|
||
(IsEquiv.adjointify (pr2 ∘ dpr1)
|
||
(λ x, dpair (x , x) idp) (λx, idp)
|
||
(λ x, sigma.rec_on x
|
||
(λ xy, prod.rec_on xy
|
||
(λ b c p, path.rec_on p idp))))
|
||
|
||
theorem ua_implies_funext_nondep {A B : Type}
|
||
: Π {f g : A → B}, f ∼ g → f ≈ g
|
||
:= (λ (f g : A → B) (p : f ∼ g),
|
||
let d := λ (x : A), dpair (f x , f x) idp in
|
||
let e := λ (x : A), dpair (f x , g x) (p x) in
|
||
let precomp1 := compose (pr₁ ∘ dpr1) in
|
||
have equiv1 [visible] : IsEquiv precomp1,
|
||
from @isequiv_src_compose A B (diagonal B),
|
||
have equiv2 [visible] : Π x y, IsEquiv (ap precomp1),
|
||
from IsEquiv.ap_closed precomp1,
|
||
have H' : Π (x y : A → diagonal B),
|
||
pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y,
|
||
from (λ x y, IsEquiv.inv (ap precomp1)),
|
||
have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e,
|
||
from idp,
|
||
have eq0 : d ≈ e,
|
||
from H' d e eq2,
|
||
have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e,
|
||
from ap _ eq0,
|
||
eq1
|
||
)
|
||
|
||
end
|
||
|
||
context
|
||
universe l
|
||
parameters {ua1 ua2 : ua_type.{1}}
|
||
|
||
-- Now we use this to prove weak funext, which as we know
|
||
-- implies (with dependent eta) also the strong dependent funext.
|
||
theorem ua_implies_weak_funext : weak_funext
|
||
:= (λ A P allcontr,
|
||
let U := (λ (x : A), unit) in
|
||
have pequiv : Πx, P x ≃ U x,
|
||
from (λ x, @equiv_contr_unit (P x) (allcontr x)),
|
||
have psim : Πx, P x ≈ U x,
|
||
from (λ x, @IsEquiv.inv _ _
|
||
(equiv_path.{1} (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)),
|
||
have p : P ≈ U,
|
||
from ua_implies_funext_nondep psim,
|
||
have tU' : is_contr (A → unit),
|
||
from is_contr.mk (λ x, ⋆)
|
||
(λ f, ua_implies_funext_nondep
|
||
(λ x, unit.rec_on (f x) idp)),
|
||
have tU : is_contr (Πx, U x),
|
||
from tU',
|
||
have tlast : is_contr (Πx, P x),
|
||
from path.transport _ (p⁻¹) tU,
|
||
tlast
|
||
)
|
||
|
||
end
|
||
|
||
-- In the following we will proof function extensionality using the univalence axiom
|
||
-- TODO: check out why I have to generalize on A and P here
|
||
definition ua_implies_funext_type {ua : ua_type.{1}} : @funext_type :=
|
||
(λ A P, weak_funext_implies_funext (@ua_implies_weak_funext ua))
|